Suppr超能文献

预测新生儿重症监护病房早期新生儿死亡率的风险评分的推导与验证:新生儿重症监护病房结局(END in NICU)评分

Derivation and Validation of a Risk Score to Predict Mortality of Early Neonates at Neonatal Intensive Care Unit: The END in NICU Score.

作者信息

Belsti Yitayeh, Nigussie Zelalem Mehari, Tsegaye Gebeyaw Wudie

机构信息

Department of Physiology, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia.

Department of Epidemiology and Biostatistics, School of Public Health, College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia.

出版信息

Int J Gen Med. 2021 Nov 12;14:8121-8134. doi: 10.2147/IJGM.S336888. eCollection 2021.

Abstract

BACKGROUND

Early neonatal death is death of infants in the first week of life. And 34% to 92% of neonatal deaths happen within 7 days of postnatal period. Thus, the early neonatal period is the most critical time for an infant, requiring different strategies to prevent mortality. Among strategies, deriving and implementing early warning scores is crucial to predict early neonatal mortality earlier upon hospital admission.

OBJECTIVE

To derive and validate a risk score to predict mortality of early neonates at Felege Hiwot Specialized Hospital neonatal intensive care unit, Bahir Dar, 2021.

METHODS

The document review was conducted from February 24, to April 08, 2021, on all early neonates admitted to neonatal intensive care unit from January 1, 2018 to December 31, 2020. The total number of early neonates included in the derivation study was 1100. Data were collected by using checklists prepared on EpiCollect5 software. After exporting the data to R version 4.0.5 software, variables with (p < 0.25) from the simple binary regression were entered into a multiple logistic regression model, and significant variables (p < 0.05) were kept in the model. The discrimination and calibration were assessed. The model was internally validated using bootstrapping technique.

RESULTS

Admission weight, birth Apgar score, perinatal asphyxia, respiratory distress syndrome, mode of delivery, sepsis, and gestational age at birth remained in the final multiple logistic regression prediction model. The area under curve of receiver operating characteristic curve for early neonatal mortality score was 90.7%. The model retained excellent discrimination under internal validation. The sensitivity, specificity, and positive predictive value, negative predictive value of the model was 89.4%, 82.5%, 55.5%, and 96.9%, respectively.

CONCLUSION

The derived score has an excellent discriminative ability and good prediction performance. This is an important tool for predicting early neonatal mortality in neonatal intensive care units at admission.

摘要

背景

早期新生儿死亡是指婴儿在出生后第一周内死亡。34%至92%的新生儿死亡发生在出生后7天内。因此,早期新生儿期是婴儿最关键的时期,需要采取不同的策略来预防死亡。在这些策略中,制定和实施早期预警评分对于在婴儿入院时更早地预测早期新生儿死亡率至关重要。

目的

制定并验证一个风险评分,以预测2021年在巴赫达尔费莱格希沃特专科医院新生儿重症监护病房的早期新生儿死亡率。

方法

于2021年2月24日至4月8日对2018年1月1日至2020年12月31日期间入住新生儿重症监护病房的所有早期新生儿进行文献回顾。纳入推导研究的早期新生儿总数为1100例。使用在EpiCollect5软件上编制的检查表收集数据。将数据导出到R版本4.0.5软件后,将简单二元回归中(p<0.25)的变量纳入多元逻辑回归模型,并将显著变量(p<0.05)保留在模型中。评估辨别力和校准情况。使用自举技术对模型进行内部验证。

结果

入院体重、出生阿氏评分、围产期窒息、呼吸窘迫综合征、分娩方式、败血症和出生时的孕周保留在最终的多元逻辑回归预测模型中。早期新生儿死亡率评分的受试者工作特征曲线下面积为90.7%。该模型在内部验证下保持了出色的辨别力。该模型的敏感性、特异性、阳性预测值、阴性预测值分别为89.4%、82.5%、55.5%和96.9%。

结论

推导得出的评分具有出色的辨别能力和良好的预测性能。这是预测新生儿重症监护病房入院时早期新生儿死亡率的重要工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44df/8594787/70ca755dc446/IJGM-14-8121-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验