Suppr超能文献

叶绿体pH稳态对光合作用的调节

Chloroplast pH Homeostasis for the Regulation of Photosynthesis.

作者信息

Trinh Mai Duy Luu, Masuda Shinji

机构信息

Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.

Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.

出版信息

Front Plant Sci. 2022 May 25;13:919896. doi: 10.3389/fpls.2022.919896. eCollection 2022.

Abstract

The pH of various chloroplast compartments, such as the thylakoid lumen and stroma, is light-dependent. Light illumination induces electron transfer in the photosynthetic apparatus, coupled with proton translocation across the thylakoid membranes, resulting in acidification and alkalization of the thylakoid lumen and stroma, respectively. Luminal acidification is crucial for inducing regulatory mechanisms that protect photosystems against photodamage caused by the overproduction of reactive oxygen species (ROS). Stromal alkalization activates enzymes involved in the Calvin-Benson-Bassham (CBB) cycle. Moreover, proton translocation across the thylakoid membranes generates a proton gradient (ΔpH) and an electric potential (ΔΨ), both of which comprise the proton motive force () that drives ATP synthase. Then, the synthesized ATP is consumed in the CBB cycle and other chloroplast metabolic pathways. In the dark, the pH of both the chloroplast stroma and thylakoid lumen becomes neutral. Despite extensive studies of the above-mentioned processes, the molecular mechanisms of how chloroplast pH can be maintained at proper levels during the light phase for efficient activation of photosynthesis and other metabolic pathways and return to neutral levels during the dark phase remain largely unclear, especially in terms of the precise control of stromal pH. The transient increase and decrease in chloroplast pH upon dark-to-light and light-to-dark transitions have been considered as signals for controlling other biological processes in plant cells. Forward and reverse genetic screening approaches recently identified new plastid proteins involved in controlling ΔpH and ΔΨ across the thylakoid membranes and chloroplast proton/ion homeostasis. These proteins have been conserved during the evolution of oxygenic phototrophs and include putative photosynthetic protein complexes, proton transporters, and/or their regulators. Herein, we summarize the recently identified protein players that control chloroplast pH and influence photosynthetic efficiency in plants.

摘要

各种叶绿体区室(如类囊体腔和基质)的pH值依赖于光照。光照会诱导光合装置中的电子传递,同时质子跨类囊体膜转运,分别导致类囊体腔酸化和基质碱化。腔室酸化对于诱导调节机制至关重要,这些机制可保护光系统免受活性氧(ROS)过量产生所导致的光损伤。基质碱化会激活参与卡尔文-本森-巴斯姆(CBB)循环的酶。此外,质子跨类囊体膜转运产生质子梯度(ΔpH)和电势(ΔΨ),二者共同构成驱动ATP合酶的质子动力势()。然后,合成的ATP在CBB循环和其他叶绿体代谢途径中被消耗。在黑暗中,叶绿体基质和类囊体腔的pH值都变为中性。尽管对上述过程进行了广泛研究,但在光阶段如何将叶绿体pH值维持在适当水平以有效激活光合作用和其他代谢途径,以及在黑暗阶段如何恢复到中性水平的分子机制在很大程度上仍不清楚,尤其是在基质pH值的精确控制方面。叶绿体pH值在暗-光和光-暗转换时的瞬时升高和降低被认为是控制植物细胞中其他生物学过程的信号。正向和反向遗传筛选方法最近鉴定出了新的质体蛋白,这些蛋白参与控制跨类囊体膜的ΔpH和ΔΨ以及叶绿体质子/离子稳态。这些蛋白在产氧光合生物的进化过程中得以保留,包括假定的光合蛋白复合物、质子转运体和/或它们的调节因子。在此,我们总结了最近鉴定出的控制叶绿体pH值并影响植物光合效率的蛋白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e74e/9174948/2de0d1820c55/fpls-13-919896-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验