Suppr超能文献

用于氧光合作用的ATP合酶c环的优化

Optimization of ATP Synthase c-Rings for Oxygenic Photosynthesis.

作者信息

Davis Geoffry A, Kramer David M

机构信息

Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.

Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States.

出版信息

Front Plant Sci. 2020 Jan 30;10:1778. doi: 10.3389/fpls.2019.01778. eCollection 2019.

Abstract

The conversion of sunlight into useable cellular energy occurs the proton-coupled electron transfer reactions of photosynthesis. Light is absorbed by photosynthetic pigments and transferred to photochemical reaction centers to initiate electron and proton transfer reactions to store energy in a redox gradient and an electrochemical proton gradient (proton motive force, ), composed of a concentration gradient (ΔpH) and an electric field (Δ), which drives the synthesis of ATP through the thylakoid FF-ATP synthase. Although ATP synthase structure and function are conserved across biological kingdoms, the number of membrane-embedded ion-binding subunits varies between organisms, ranging from 8 to 17, theoretically altering the H/ATP ratio for different ATP synthase complexes, with profound implications for the bioenergetic processes of cellular metabolism. Of the known -ring stoichiometries, photosynthetic -rings are among the largest identified stoichiometries, and it has been proposed that decreasing the c-stoichiometry could increase the energy conversion efficiency of photosynthesis. Indeed, there is strong evidence that the high H/ATP of the chloroplast ATP synthase results in a low ATP/nicotinamide adenine dinucleotide phosphate (NADPH) ratio produced by photosynthetic linear electron flow, requiring secondary processes such as cyclic electron flow to support downstream metabolism. We hypothesize that the larger subunit stoichiometry observed in photosynthetic ATP synthases was selected for because it allows the thylakoid to maintain in a range where ATP synthesis is supported, but avoids excess Δ and ΔpH, both of which can lead to production of reactive oxygen species and subsequent photodamage. Numerical kinetic simulations of the energetics of chloroplast photosynthetic reactions with altered -ring size predicts the energy storage of and its effects on the photochemical reaction centers strongly support this hypothesis, suggesting that, despite the low efficiency and suboptimal ATP/NADPH ratio, a high H/ATP is favored to avoid photodamage. This has important implications for the evolution and regulation of photosynthesis as well as for synthetic biology efforts to alter photosynthetic efficiency by engineering the ATP synthase.

摘要

阳光转化为可用的细胞能量是通过光合作用中的质子耦合电子转移反应实现的。光被光合色素吸收并转移到光化学反应中心,引发电子和质子转移反应,将能量存储在氧化还原梯度和电化学质子梯度(质子动力势,由浓度梯度(ΔpH)和电场(Δ)组成)中,该梯度通过类囊体F₀F₁ - ATP合酶驱动ATP的合成。尽管ATP合酶的结构和功能在生物界中是保守的,但膜嵌入离子结合c亚基的数量在不同生物体之间有所不同,范围从8到17个,理论上会改变不同ATP合酶复合物的H⁺/ATP比值,对细胞代谢的生物能量过程产生深远影响。在已知的c环化学计量中,光合c环是已确定的最大化学计量之一,有人提出降低c化学计量可能会提高光合作用的能量转换效率。事实上,有强有力的证据表明,叶绿体ATP合酶的高H⁺/ATP导致光合线性电子流产生的ATP/烟酰胺腺嘌呤二核苷酸磷酸(NADPH)比值较低,需要诸如循环电子流等次级过程来支持下游代谢。我们假设,光合ATP合酶中观察到的较大c亚基化学计量之所以被选择,是因为它能使类囊体将质子动力势维持在支持ATP合成的范围内,但避免了过量的ΔpH和Δψ,这两者都可能导致活性氧的产生以及随后的光损伤。对具有改变的c环大小的叶绿体光合反应能量学的数值动力学模拟预测了质子动力势的能量存储及其对光化学反应中心的影响,有力地支持了这一假设,表明尽管效率较低且ATP/NADPH比值不理想,但高H⁺/ATP有利于避免光损伤。这对光合作用的进化和调控以及通过工程改造ATP合酶来改变光合效率的合成生物学研究具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac0f/7003800/bafa4f927b07/fpls-10-01778-g001.jpg

相似文献

1
Optimization of ATP Synthase c-Rings for Oxygenic Photosynthesis.
Front Plant Sci. 2020 Jan 30;10:1778. doi: 10.3389/fpls.2019.01778. eCollection 2019.
2
Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts.
Mol Plant. 2017 Jan 9;10(1):20-29. doi: 10.1016/j.molp.2016.08.004. Epub 2016 Aug 26.
4
Chloroplast pH Homeostasis for the Regulation of Photosynthesis.
Front Plant Sci. 2022 May 25;13:919896. doi: 10.3389/fpls.2022.919896. eCollection 2022.
5
High cyclic electron transfer via the PGR5 pathway in the absence of photosynthetic control.
Plant Physiol. 2023 May 2;192(1):370-386. doi: 10.1093/plphys/kiad084.
6
Balancing the central roles of the thylakoid proton gradient.
Trends Plant Sci. 2003 Jan;8(1):27-32. doi: 10.1016/s1360-1385(02)00010-9.
7
In vivo regulation of thylakoid proton motive force in immature leaves.
Photosynth Res. 2018 Nov;138(2):207-218. doi: 10.1007/s11120-018-0565-1. Epub 2018 Jul 28.
8
Impact of engineering the ATP synthase rotor ring on photosynthesis in tobacco chloroplasts.
Plant Physiol. 2023 May 31;192(2):1221-1233. doi: 10.1093/plphys/kiad043.

引用本文的文献

1
Engineering of ATP synthase for enhancement of proton-to-ATP ratio.
Nat Commun. 2025 Jul 3;16(1):5410. doi: 10.1038/s41467-025-61227-w.
2
The molecular mechanism of ATP synthase constrains the evolutionary landscape of chemiosmosis.
Biophys J. 2025 Jul 1;124(13):2103-2119. doi: 10.1016/j.bpj.2025.05.017. Epub 2025 May 19.
3
Structure of ATP synthase from an early photosynthetic bacterium .
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2425824122. doi: 10.1073/pnas.2425824122. Epub 2025 Mar 25.
4
Regulation of Microalgal Photosynthetic Electron Transfer.
Plants (Basel). 2024 Jul 29;13(15):2103. doi: 10.3390/plants13152103.
6
Chloroplast ATP synthase: From structure to engineering.
Plant Cell. 2024 Oct 3;36(10):3974-3996. doi: 10.1093/plcell/koae081.
7
CBSX2 is required for the efficient oxidation of chloroplast redox-regulated enzymes in darkness.
Plant Direct. 2023 Nov 13;7(11):e542. doi: 10.1002/pld3.542. eCollection 2023 Nov.
9
In-Depth Computational Analysis of Natural and Artificial Carbon Fixation Pathways.
Biodes Res. 2021 Aug 31;2021:9898316. doi: 10.34133/2021/9898316. eCollection 2021.

本文引用的文献

1
Probing the electric field across thylakoid membranes in cyanobacteria.
Proc Natl Acad Sci U S A. 2019 Oct 22;116(43):21900-21906. doi: 10.1073/pnas.1913099116. Epub 2019 Oct 7.
2
Photosynthesis in Arabidopsis Is Unaffected by the Function of the Vacuolar K Channel TPK3.
Plant Physiol. 2019 Jul;180(3):1322-1335. doi: 10.1104/pp.19.00255. Epub 2019 May 3.
3
Structure and Mechanisms of F-Type ATP Synthases.
Annu Rev Biochem. 2019 Jun 20;88:515-549. doi: 10.1146/annurev-biochem-013118-110903. Epub 2019 Mar 22.
4
Enhancing photosynthesis in plants: the light reactions.
Essays Biochem. 2018 Apr 13;62(1):85-94. doi: 10.1042/EBC20170015.
5
In Silico Analysis of the Regulation of the Photosynthetic Electron Transport Chain in C3 Plants.
Plant Physiol. 2018 Feb;176(2):1247-1261. doi: 10.1104/pp.17.00779. Epub 2017 Sep 18.
9
A voltage-dependent chloride channel fine-tunes photosynthesis in plants.
Nat Commun. 2016 May 24;7:11654. doi: 10.1038/ncomms11654.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验