Suppr超能文献

基于 GLCM 纹理提取的集成学习框架在 CT 图像肺癌早期检测中的应用。

Ensemble Learning Framework with GLCM Texture Extraction for Early Detection of Lung Cancer on CT Images.

机构信息

Department of Computer Science, College of Computer and Information Sciences, Majmaah University, Al-Majmaah, Saudi Arabia.

Department of Computer Science & Engineering, Birla Institute of Technology, Mesra, Ranchi, India.

出版信息

Comput Math Methods Med. 2022 Jun 2;2022:2733965. doi: 10.1155/2022/2733965. eCollection 2022.

Abstract

Lung cancer has emerged as a major cause of death among all demographics worldwide, largely caused by a proliferation of smoking habits. However, early detection and diagnosis of lung cancer through technological improvements can save the lives of millions of individuals affected globally. Computerized tomography (CT) scan imaging is a proven and popular technique in the medical field, but diagnosing cancer with only CT scans is a difficult task even for doctors and experts. This is why computer-assisted diagnosis has revolutionized disease diagnosis, especially cancer detection. This study looks at 20 CT scan images of lungs. In a preprocessing step, we chose the best filter to be applied to medical CT images between median, Gaussian, 2D convolution, and mean. From there, it was established that the median filter is the most appropriate. Next, we improved image contrast by applying adaptive histogram equalization. Finally, the preprocessed image with better quality is subjected to two optimization algorithms, fuzzy c-means and k-means clustering. The performance of these algorithms was then compared. Fuzzy c-means showed the highest accuracy of 98%. The feature was extracted using Gray Level Cooccurrence Matrix (GLCM). In classification, a comparison between three algorithms-bagging, gradient boosting, and ensemble (SVM, MLPNN, DT, logistic regression, and KNN)-was performed. Gradient boosting performed the best among these three, having an accuracy of 90.9%.

摘要

肺癌已成为全球所有人群的主要死亡原因之一,主要是由于吸烟习惯的泛滥所致。然而,通过技术的进步,早期发现和诊断肺癌可以挽救全球数以百万计的患者的生命。计算机断层扫描(CT)成像技术是医学领域中一种经过验证且流行的技术,但即使对于医生和专家来说,仅通过 CT 扫描来诊断癌症也是一项艰巨的任务。这就是为什么计算机辅助诊断已经彻底改变了疾病诊断,尤其是癌症检测。本研究着眼于 20 张肺部 CT 扫描图像。在预处理步骤中,我们选择了应用于医学 CT 图像的最佳滤波器,包括中值、高斯、2D 卷积和均值。从那里可以确定,中值滤波器是最合适的。接下来,我们通过应用自适应直方图均衡化来提高图像对比度。最后,对质量更好的预处理图像应用两种优化算法,即模糊 c 均值和 k 均值聚类。然后比较这些算法的性能。模糊 c 均值的准确率最高,为 98%。使用灰度共生矩阵(GLCM)提取特征。在分类中,对三种算法——bagging、梯度提升和集成(SVM、MLPNN、DT、逻辑回归和 KNN)进行了比较。这三种算法中,梯度提升的准确率最高,为 90.9%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d644/9184160/f24f11662c64/CMMM2022-2733965.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验