Suppr超能文献

结论还是错觉:量化基于标记点的运动捕捉逆分析中由于标记点配准和模型缩放误差导致的不确定性

Conclusion or Illusion: Quantifying Uncertainty in Inverse Analyses From Marker-Based Motion Capture due to Errors in Marker Registration and Model Scaling.

作者信息

Uchida Thomas K, Seth Ajay

机构信息

Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada.

Department of BioMechanical Engineering, Delft University of Technology, Delft, Netherlands.

出版信息

Front Bioeng Biotechnol. 2022 May 25;10:874725. doi: 10.3389/fbioe.2022.874725. eCollection 2022.

Abstract

Estimating kinematics from optical motion capture with skin-mounted markers, referred to as an inverse kinematic (IK) calculation, is the most common experimental technique in human motion analysis. Kinematics are often used to diagnose movement disorders and plan treatment strategies. In many such applications, small differences in joint angles can be clinically significant. Kinematics are also used to estimate joint powers, muscle forces, and other quantities of interest that cannot typically be measured directly. Thus, the accuracy and reproducibility of IK calculations are critical. In this work, we isolate and quantify the uncertainty in joint angles, moments, and powers due to two sources of error during IK analyses: errors in the placement of markers on the model (marker registration) and errors in the dimensions of the model's body segments (model scaling). We demonstrate that IK solutions are best presented as a distribution of equally probable trajectories when these sources of modeling uncertainty are considered. Notably, a substantial amount of uncertainty exists in the computed kinematics and kinetics even if low marker tracking errors are achieved. For example, considering only 2 cm of marker registration uncertainty, peak ankle plantarflexion angle varied by 15.9°, peak ankle plantarflexion moment varied by 26.6 N⋅m, and peak ankle power at push off varied by 75.9 W during healthy gait. This uncertainty can directly impact the classification of patient movements and the evaluation of training or device effectiveness, such as calculations of push-off power. We provide scripts in OpenSim so that others can reproduce our results and quantify the effect of modeling uncertainty in their own studies.

摘要

通过安装在皮肤上的标记物从光学运动捕捉中估计运动学,即所谓的逆运动学(IK)计算,是人体运动分析中最常见的实验技术。运动学常用于诊断运动障碍和制定治疗策略。在许多此类应用中,关节角度的微小差异可能具有临床意义。运动学还用于估计关节功率、肌肉力量以及其他通常无法直接测量的感兴趣的量。因此,IK计算的准确性和可重复性至关重要。在这项工作中,我们分离并量化了IK分析过程中由于两个误差源导致的关节角度、力矩和功率的不确定性:标记物在模型上的放置误差(标记物配准)和模型身体节段尺寸的误差(模型缩放)。我们证明,当考虑这些建模不确定性的来源时,IK解决方案最好表示为等概率轨迹的分布。值得注意的是,即使实现了低标记物跟踪误差,计算得到的运动学和动力学中仍存在大量不确定性。例如,仅考虑2厘米的标记物配准不确定性,在健康步态期间,踝关节最大跖屈角度变化了15.9°,踝关节最大跖屈力矩变化了26.6牛·米,蹬离时踝关节最大功率变化了75.9瓦。这种不确定性会直接影响患者运动的分类以及训练或设备有效性的评估,比如蹬离功率的计算。我们在OpenSim中提供了脚本,以便其他人能够重现我们的结果,并在他们自己的研究中量化建模不确定性的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a10/9174465/dae4ce1e69b6/fbioe-10-874725-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验