Suppr超能文献

用于同时保护私有数据和深度学习模型的物理不可克隆内存计算

Physical unclonable in-memory computing for simultaneous protecting private data and deep learning models.

作者信息

Yue Wenshuo, Wu Kai, Li Zhiyuan, Zhou Juchen, Wang Zeyu, Zhang Teng, Yang Yuxiang, Ye Lintao, Wu Yongqin, Bu Weihai, Wang Shaozhi, He Xiaodong, Yan Xiaobing, Tao Yaoyu, Yan Bonan, Huang Ru, Yang Yuchao

机构信息

Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China.

Institute for Artificial Intelligence, Peking University, Beijing, China.

出版信息

Nat Commun. 2025 Jan 25;16(1):1031. doi: 10.1038/s41467-025-56412-w.

Abstract

Compute-in-memory based on resistive random-access memory has emerged as a promising technology for accelerating neural networks on edge devices. It can reduce frequent data transfers and improve energy efficiency. However, the nonvolatile nature of resistive memory raises concerns that stored weights can be easily extracted during computation. To address this challenge, we propose RePACK, a threefold data protection scheme that safeguards neural network input, weight, and structural information. It utilizes a bipartite-sort coding scheme to store data with a fully on-chip physical unclonable function. Experimental results demonstrate the effectiveness of increasing enumeration complexity to 5.77 × 10 for a 128-column compute-in-memory core. We further implement and evaluate a RePACK computing system on a 40 nm resistive memory compute-in-memory chip. This work represents a step towards developing safe, robust, and efficient edge neural network accelerators. It potentially serves as the hardware infrastructure for edge devices in federated learning or other systems.

摘要

基于电阻式随机存取存储器的内存计算已成为一种很有前途的技术,可用于加速边缘设备上的神经网络。它可以减少频繁的数据传输并提高能源效率。然而,电阻式存储器的非易失性引发了人们的担忧,即存储的权重在计算过程中可能很容易被提取。为应对这一挑战,我们提出了RePACK,这是一种三重数据保护方案,可保护神经网络的输入、权重和结构信息。它利用二分排序编码方案,通过完全片上物理不可克隆功能来存储数据。实验结果表明,对于一个128列的内存计算核心,枚举复杂度提高到了5.77×10。我们还在一个40纳米的电阻式内存计算芯片上实现并评估了一个RePACK计算系统。这项工作朝着开发安全、稳健且高效的边缘神经网络加速器迈出了一步。它有可能成为联邦学习或其他系统中边缘设备的硬件基础设施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255d/11762733/698cc05be51a/41467_2025_56412_Fig3_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验