Suppr超能文献

利用无声空间编码轴加速脑成像。

Accelerating Brain Imaging Using a Silent Spatial Encoding Axis.

机构信息

Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.

Spinoza Center for Neuroimaging, Amsterdam, Netherlands.

出版信息

Magn Reson Med. 2022 Oct;88(4):1785-1793. doi: 10.1002/mrm.29350. Epub 2022 Jun 13.

Abstract

PURPOSE

To characterize the acceleration capabilities of a silent head insert gradient axis that operates at the inaudible frequency of 20 kHz and a maximum gradient amplitude of 40 mT/m without inducing peripheral nerve stimulation.

METHODS

The silent gradient axis' acquisitions feature an oscillating gradient in the phase-encoding direction that is played out on top of a cartesian readout, similarly as done in Wave-CAIPI. The additional spatial encoding fills k-space in readout lanes allowing for the acquisition of fewer phase-encoding steps without increasing aliasing artifacts. Fully sampled 2D gradient echo datasets were acquired both with and without the silent readout. All scans were retrospectively undersampled (acceleration factors R = 1 to 12) to compare conventional SENSE acceleration and acceleration using the silent gradient. The silent gradient amplitude and the readout bandwidth were varied to investigate the effect on artifacts and g-factor.

RESULTS

The silent readout reduced the g-factor for all acceleration factors when compared to SENSE acceleration. Increasing the silent gradient amplitude from 31.5 mT/m to 40 mT/m at an acceleration factor of 10 yielded a reduction in the average g-factor (g ) from 1.3 ± 0.14 (g  = 1.9) to 1.1 ± 0.09 (g  = 1.6) Furthermore, reducing the number of cycles increased the readout bandwidth and the g-factor that reached g  = 1.5 ± 0.16 for a readout bandwidth of 651 Hz/pixel and an acceleration factor of R = 8.

CONCLUSION

A silent gradient axis enables high acceleration factors up to R = 10 while maintaining a g-factor close to unity (g  = 1.1 and g  = 1.6) and can be acquired with clinically relevant readout bandwidths.

摘要

目的

描述一种无声头插梯度轴的加速能力,该梯度轴以 20 kHz 的人耳听不到的频率和 40 mT/m 的最大梯度幅度运行,而不会引起周围神经刺激。

方法

无声梯度轴的采集在相位编码方向上具有一个振荡梯度,该梯度叠加在笛卡尔读出上,类似于在 Wave-CAIPI 中完成的那样。额外的空间编码填充读出线中的 k 空间,允许在不增加混叠伪影的情况下采集更少的相位编码步骤。使用和不使用无声读出都采集了完全采样的 2D 梯度回波数据集。所有扫描均进行回顾性欠采样(加速因子 R 为 1 至 12),以比较传统的 SENSE 加速和使用无声梯度的加速。改变无声梯度幅度和读出带宽,以研究对伪影和 g 因子的影响。

结果

与 SENSE 加速相比,无声读出在所有加速因子下均降低了 g 因子。在加速因子为 10 时,将无声梯度幅度从 31.5 mT/m 增加到 40 mT/m,平均 g 因子(g)从 1.3±0.14(g=1.9)降低到 1.1±0.09(g=1.6)。此外,减少循环次数增加了读出带宽和 g 因子,当读出带宽为 651 Hz/pixel 且加速因子为 R=8 时,g 因子达到 1.5±0.16。

结论

无声梯度轴能够实现高达 R=10 的高加速因子,同时保持接近 1 的 g 因子(g=1.1 和 g=1.6),并且可以在临床相关的读出带宽下采集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17bb/9544176/22d19d0173ae/MRM-88-1785-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验