超高灵敏的核糖体测序技术揭示了哺乳动物卵母细胞到胚胎过渡和植入前发育过程中的翻译景观。

Ultrasensitive Ribo-seq reveals translational landscapes during mammalian oocyte-to-embryo transition and pre-implantation development.

机构信息

Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.

Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China.

出版信息

Nat Cell Biol. 2022 Jun;24(6):968-980. doi: 10.1038/s41556-022-00928-6. Epub 2022 Jun 13.

Abstract

In mammals, translational control plays critical roles during oocyte-to-embryo transition (OET) when transcription ceases. However, the underlying regulatory mechanisms remain challenging to study. Here, using low-input Ribo-seq (Ribo-lite), we investigated translational landscapes during OET using 30-150 mouse oocytes or embryos per stage. Ribo-lite can also accommodate single oocytes. Combining PAIso-seq to interrogate poly(A) tail lengths, we found a global switch of translatome that closely parallels changes of poly(A) tails upon meiotic resumption. Translation activation correlates with polyadenylation and is supported by polyadenylation signal proximal cytoplasmic polyadenylation elements (papCPEs) in 3' untranslated regions. By contrast, translation repression parallels global de-adenylation. The latter includes transcripts containing no CPEs or non-papCPEs, which encode many transcription regulators that are preferentially re-activated before zygotic genome activation. CCR4-NOT, the major de-adenylation complex, and its key adaptor protein BTG4 regulate translation downregulation often independent of RNA decay. BTG4 is not essential for global de-adenylation but is required for selective gene de-adenylation and production of very short-tailed transcripts. In sum, our data reveal intimate interplays among translation, RNA stability and poly(A) tail length regulation underlying mammalian OET.

摘要

在哺乳动物中,当转录停止时,翻译控制在卵母细胞到胚胎过渡 (OET) 期间发挥着关键作用。然而,潜在的调节机制仍然难以研究。在这里,我们使用低输入核糖体测序 (Ribo-lite),使用每个阶段 30-150 个卵母细胞或胚胎,研究了 OET 期间的翻译景观。Ribo-lite 也可以容纳单个卵母细胞。我们结合 PAIso-seq 来研究 poly(A) 尾巴的长度,发现翻译组的整体转换与减数分裂恢复时 poly(A) 尾巴的变化非常相似。翻译激活与多聚腺苷酸化相关,并得到 3'非翻译区中靠近 poly(A) 信号的细胞质 poly(A) 结合元件 (papCPE) 的支持。相比之下,翻译抑制与全局去腺苷酸化平行。后者包括不含 CPE 或非 papCPE 的转录本,这些转录本编码许多转录调节剂,它们在合子基因组激活之前优先重新激活。CCR4-NOT 是主要的去腺苷酸化复合物,其关键衔接蛋白 BTG4 独立于 RNA 降解来调节翻译下调。BTG4 不是全局去腺苷酸化所必需的,但对于选择性基因去腺苷酸化和产生非常短尾巴的转录本是必需的。总之,我们的数据揭示了哺乳动物 OET 中翻译、RNA 稳定性和 poly(A) 尾巴长度调节之间的密切相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索