Réda Clémence, Kaufmann Emilie, Delahaye-Duriez Andrée
NeuroDiderot, UMR 1141, Inserm, Université de Paris, Sorbonne Paris Cité, Hôpital Robert Debré, 48, boulevard Sérurier, Paris 75019, France.
Université Paris Diderot, Université de Paris, Sorbonne Paris Cité, 5, rue Thomas Mann, Paris 75013, France.
Comput Struct Biotechnol J. 2019 Dec 26;18:241-252. doi: 10.1016/j.csbj.2019.12.006. eCollection 2020.
Due to the huge amount of biological and medical data available today, along with well-established machine learning algorithms, the design of largely automated drug development pipelines can now be envisioned. These pipelines may guide, or speed up, drug discovery; provide a better understanding of diseases and associated biological phenomena; help planning preclinical wet-lab experiments, and even future clinical trials. This automation of the drug development process might be key to the current issue of low productivity rate that pharmaceutical companies currently face. In this survey, we will particularly focus on two classes of methods: sequential learning and recommender systems, which are active biomedical fields of research.
由于如今可获取大量的生物和医学数据,再加上成熟的机器学习算法,现在可以设想设计出高度自动化的药物研发流程。这些流程可能会指导或加速药物发现;更深入地了解疾病及相关生物现象;有助于规划临床前湿实验室实验,甚至未来的临床试验。药物研发过程的这种自动化可能是制药公司当前面临的生产率低下这一问题的关键。在本次综述中,我们将特别关注两类方法:序列学习和推荐系统,它们是活跃的生物医学研究领域。