Suppr超能文献

孟德尔随机化分析东亚和欧洲人群 37 种临床因素与冠心病的关系。

Mendelian randomization analysis of 37 clinical factors and coronary artery disease in East Asian and European populations.

机构信息

Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Genome Med. 2022 Jun 14;14(1):63. doi: 10.1186/s13073-022-01067-1.

Abstract

BACKGROUND

Coronary artery disease (CAD) remains the leading cause of mortality worldwide despite enormous efforts devoted to its prevention and treatment. While many genetic loci have been identified to associate with CAD, the intermediate causal risk factors and etiology have not been fully understood. This study assesses the causal effects of 37 heritable clinical factors on CAD in East Asian and European populations.

METHODS

We collected genome-wide association summary statistics of 37 clinical factors from the Biobank Japan (42,793 to 191,764 participants) and the UK Biobank (314,658 to 442,817 participants), paired with summary statistics of CAD from East Asians (29,319 cases and 183,134 controls) and Europeans (91,753 cases and 311,344 controls). These clinical factors covered 12 cardiometabolic traits, 13 hematological indices, 7 hepatological and 3 renal function indices, and 2 serum electrolyte indices. We performed univariable and multivariable Mendelian randomization (MR) analyses in East Asians and Europeans separately, followed by meta-analysis.

RESULTS

Univariable MR analyses identified reliable causal evidence (P < 0.05/37) of 10 cardiometabolic traits (height, body mass index [BMI], blood pressure, glycemic and lipid traits) and 4 other clinical factors related to red blood cells (red blood cell count [RBC], hemoglobin, hematocrit) and uric acid (UA). Interestingly, while generally consistent, we identified population heterogeneity in the causal effects of BMI and UA, with higher effect sizes in East Asians than those in Europeans. After adjusting for cardiometabolic factors in multivariable MR analysis, red blood cell traits (RBC, meta-analysis odds ratio 1.07 per standard deviation increase, 95% confidence interval 1.02-1.13; hemoglobin, 1.10, 1.03-1.16; hematocrit, 1.10, 1.04-1.17) remained significant (P < 0.05), while UA showed an independent causal effect in East Asians only (1.12, 1.06-1.19, P = 3.26×10).

CONCLUSIONS

We confirmed the causal effects of 10 cardiometabolic traits on CAD and identified causal risk effects of RBC, hemoglobin, hematocrit, and UA independent of traditional cardiometabolic factors. We found no causal effects for 23 clinical factors, despite their reported epidemiological associations. Our findings suggest the physiology of red blood cells and the level of UA as potential intervention targets for the prevention of CAD.

摘要

背景

尽管在预防和治疗方面做出了巨大努力,冠状动脉疾病 (CAD) 仍然是全球主要的死亡原因。虽然已经确定了许多与 CAD 相关的遗传位点,但中间因果风险因素和病因尚未完全了解。本研究评估了 37 种遗传性临床因素对东亚和欧洲人群 CAD 的因果影响。

方法

我们从日本生物银行(42793 至 191764 名参与者)和英国生物银行(314658 至 442817 名参与者)中收集了 37 种临床因素的全基因组关联汇总统计数据,并与东亚(29319 例病例和 183134 例对照)和欧洲(91753 例病例和 311344 例对照)的 CAD 汇总统计数据进行了配对。这些临床因素涵盖了 12 种心血管代谢特征、13 种血液指标、7 种肝脏和 3 种肾功能指标以及 2 种血清电解质指标。我们分别在东亚人和欧洲人中进行了单变量和多变量 Mendelian 随机化 (MR) 分析,然后进行了荟萃分析。

结果

单变量 MR 分析确定了 10 种心血管代谢特征(身高、体重指数 [BMI]、血压、血糖和血脂特征)和与红细胞相关的其他 4 种临床因素(红细胞计数 [RBC]、血红蛋白、血细胞比容)具有可靠的因果证据(P < 0.05/37)和尿酸 (UA)。有趣的是,尽管结果基本一致,但我们在 BMI 和 UA 的因果效应方面发现了人群异质性,东亚人的效应大小高于欧洲人。在多变量 MR 分析中调整心血管代谢因素后,红细胞特征(RBC,每标准偏差增加的 meta 分析比值比为 1.07,95%置信区间为 1.02-1.13;血红蛋白,1.10,1.03-1.16;血细胞比容,1.10,1.04-1.17)仍然显著(P < 0.05),而仅在东亚人中,UA 显示出独立的因果效应(1.12,1.06-1.19,P = 3.26×10)。

结论

我们证实了 10 种心血管代谢特征对 CAD 的因果影响,并确定了 RBC、血红蛋白、血细胞比容和 UA 独立于传统心血管代谢因素的因果风险效应。尽管这些临床因素具有报道的流行病学关联,但我们没有发现 23 种临床因素的因果作用。我们的研究结果表明,红细胞的生理学和 UA 水平可能是预防 CAD 的潜在干预靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6d3/9195360/b5af594c031e/13073_2022_1067_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验