Suppr超能文献

FDG-PET 放射组学特征图谱在肺癌放疗靶区勾画中的潜在优势。

Potential advantages of FDG-PET radiomic feature map for target volume delineation in lung cancer radiotherapy.

机构信息

Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran.

Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

J Appl Clin Med Phys. 2022 Sep;23(9):e13696. doi: 10.1002/acm2.13696. Epub 2022 Jun 14.

Abstract

PURPOSE

To investigate the potential benefits of FDG PET radiomic feature maps (RFMs) for target delineation in non-small cell lung cancer (NSCLC) radiotherapy.

METHODS

Thirty-two NSCLC patients undergoing FDG PET/CT imaging were included. For each patient, nine grey-level co-occurrence matrix (GLCM) RFMs were generated. gross target volume (GTV) and clinical target volume (CTV) were contoured on CT (GTV , CTV ), PET (GTV , CTV ), and RFMs (GTV , CTV ,). Intratumoral heterogeneity areas were segmented as GTV and radiomic boost target volume (RTV ) on PET and RFMs, respectively. GTV in homogenous tumors and GTV in heterogeneous tumors were considered as GTV (GTV ). One-way analysis of variance was conducted to determine the threshold that finds the best conformity for GTV with GTV . Dice similarity coefficient (DSC) and mean absolute percent error (MAPE) were calculated. Linear regression analysis was employed to report the correlations between the gold standard and RFM-derived target volumes.

RESULTS

Entropy, contrast, and Haralick correlation (H-correlation) were selected for tumor segmentation. The threshold values of 80%, 50%, and 10% have the best conformity of GTV , GTV , and GTV with GTV , respectively. The linear regression results showed a positive correlation between GTV and GTV (r = 0.98, p < 0.001), between GTV and GTV (r = 0.93, p < 0.001), and between GTV and GTV (r = 0.91, p < 0.001). The average threshold values of 45% and 15% were resulted in the best segmentation matching between CTV and CTV with CTV , respectively. Moreover, we used RFM to determine RTV in the heterogeneous tumors. Comparison of RTV with GTV MAPE showed the volume error differences of 31.7%, 36%, and 34.7% in RTV , RTV , and RTV , respectively.

CONCLUSIONS

FDG PET-based radiomics features in NSCLC demonstrated a promising potential for decision support in radiotherapy, helping radiation oncologists delineate tumors and generate accurate segmentation for heterogeneous region of tumors.

摘要

目的

探讨 FDG PET 放射组学特征图(RFM)在非小细胞肺癌(NSCLC)放射治疗中的靶区勾画的潜在获益。

方法

纳入 32 例接受 FDG PET/CT 成像的 NSCLC 患者。为每位患者生成 9 个灰度共生矩阵(GLCM)RFM。在 CT(GTV、CTV)、PET(GTV、CTV)和 RFM(GTV、CTV)上勾画大体肿瘤体积(GTV)和临床靶区(CTV)。在 PET 和 RFM 上,分别将肿瘤内异质性区域分割为 GTV 和放射组学 boost 靶区(RTV)。将同质肿瘤的 GTV 和异质肿瘤的 GTV 分别视为 GTV(GTV)。采用单因素方差分析确定最佳一致性的阈值,以找到 GTV 与 GTV 的最佳一致性。计算 Dice 相似系数(DSC)和平均绝对百分比误差(MAPE)。采用线性回归分析报告金标准与 RFM 衍生靶区体积之间的相关性。

结果

对肿瘤进行分割时选择了熵、对比度和 Haralick 相关(H 相关)。阈值分别为 80%、50%和 10%,以实现 GTV、GTV和 GTV 与 GTV 之间的最佳一致性。线性回归结果显示,GTV 与 GTV 之间呈正相关(r=0.98,p<0.001),GTV 与 GTV 之间呈正相关(r=0.93,p<0.001),GTV 与 GTV 之间呈正相关(r=0.91,p<0.001)。阈值分别为 45%和 15%时,CTV 与 CTV 之间的最佳分割匹配。此外,我们使用 RFM 来确定异质肿瘤中的 RTV。与 GTV 的 MAPE 比较,RTV、RTV 和 RTV 的体积误差分别为 31.7%、36%和 34.7%。

结论

在 NSCLC 中,基于 FDG PET 的放射组学特征显示出在放疗决策支持方面具有很大的应用潜力,有助于放射肿瘤学家勾画肿瘤并为肿瘤的异质区域生成精确的分割。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e62f/9512354/4e5dd7ea640b/ACM2-23-e13696-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验