Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran.
Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
J Appl Clin Med Phys. 2022 Sep;23(9):e13696. doi: 10.1002/acm2.13696. Epub 2022 Jun 14.
To investigate the potential benefits of FDG PET radiomic feature maps (RFMs) for target delineation in non-small cell lung cancer (NSCLC) radiotherapy.
Thirty-two NSCLC patients undergoing FDG PET/CT imaging were included. For each patient, nine grey-level co-occurrence matrix (GLCM) RFMs were generated. gross target volume (GTV) and clinical target volume (CTV) were contoured on CT (GTV , CTV ), PET (GTV , CTV ), and RFMs (GTV , CTV ,). Intratumoral heterogeneity areas were segmented as GTV and radiomic boost target volume (RTV ) on PET and RFMs, respectively. GTV in homogenous tumors and GTV in heterogeneous tumors were considered as GTV (GTV ). One-way analysis of variance was conducted to determine the threshold that finds the best conformity for GTV with GTV . Dice similarity coefficient (DSC) and mean absolute percent error (MAPE) were calculated. Linear regression analysis was employed to report the correlations between the gold standard and RFM-derived target volumes.
Entropy, contrast, and Haralick correlation (H-correlation) were selected for tumor segmentation. The threshold values of 80%, 50%, and 10% have the best conformity of GTV , GTV , and GTV with GTV , respectively. The linear regression results showed a positive correlation between GTV and GTV (r = 0.98, p < 0.001), between GTV and GTV (r = 0.93, p < 0.001), and between GTV and GTV (r = 0.91, p < 0.001). The average threshold values of 45% and 15% were resulted in the best segmentation matching between CTV and CTV with CTV , respectively. Moreover, we used RFM to determine RTV in the heterogeneous tumors. Comparison of RTV with GTV MAPE showed the volume error differences of 31.7%, 36%, and 34.7% in RTV , RTV , and RTV , respectively.
FDG PET-based radiomics features in NSCLC demonstrated a promising potential for decision support in radiotherapy, helping radiation oncologists delineate tumors and generate accurate segmentation for heterogeneous region of tumors.
探讨 FDG PET 放射组学特征图(RFM)在非小细胞肺癌(NSCLC)放射治疗中的靶区勾画的潜在获益。
纳入 32 例接受 FDG PET/CT 成像的 NSCLC 患者。为每位患者生成 9 个灰度共生矩阵(GLCM)RFM。在 CT(GTV、CTV)、PET(GTV、CTV)和 RFM(GTV、CTV)上勾画大体肿瘤体积(GTV)和临床靶区(CTV)。在 PET 和 RFM 上,分别将肿瘤内异质性区域分割为 GTV 和放射组学 boost 靶区(RTV)。将同质肿瘤的 GTV 和异质肿瘤的 GTV 分别视为 GTV(GTV)。采用单因素方差分析确定最佳一致性的阈值,以找到 GTV 与 GTV 的最佳一致性。计算 Dice 相似系数(DSC)和平均绝对百分比误差(MAPE)。采用线性回归分析报告金标准与 RFM 衍生靶区体积之间的相关性。
对肿瘤进行分割时选择了熵、对比度和 Haralick 相关(H 相关)。阈值分别为 80%、50%和 10%,以实现 GTV、GTV和 GTV 与 GTV 之间的最佳一致性。线性回归结果显示,GTV 与 GTV 之间呈正相关(r=0.98,p<0.001),GTV 与 GTV 之间呈正相关(r=0.93,p<0.001),GTV 与 GTV 之间呈正相关(r=0.91,p<0.001)。阈值分别为 45%和 15%时,CTV 与 CTV 之间的最佳分割匹配。此外,我们使用 RFM 来确定异质肿瘤中的 RTV。与 GTV 的 MAPE 比较,RTV、RTV 和 RTV 的体积误差分别为 31.7%、36%和 34.7%。
在 NSCLC 中,基于 FDG PET 的放射组学特征显示出在放疗决策支持方面具有很大的应用潜力,有助于放射肿瘤学家勾画肿瘤并为肿瘤的异质区域生成精确的分割。