Department of Physics, University of Science and Technology of Chinagrid.59053.3a, Hefei, Anhui, China.
School of Life Sciences, Zhengzhou University, Zhengzhou, China.
mBio. 2022 Aug 30;13(4):e0078222. doi: 10.1128/mbio.00782-22. Epub 2022 Jun 14.
The flagellar motor drives the rotation of flagellar filaments, propelling the swimming of flagellated bacteria. The maximum torque the motor generates, the stall torque, is a key characteristic of the motor function. Direct measurements of the stall torque carried out 3 decades ago suffered from large experimental uncertainties, and subsequently there were only indirect measurements. Here, we applied magnetic tweezers to directly measure the stall torque in E. coli. We precisely calibrated the torsional stiffness of the magnetic tweezers and performed motor resurrection experiments at stall, accomplishing a precise determination of the stall torque per torque-generating unit (stator unit). From our measurements, each stator passes 2 protons per step, indicating a tight coupling between motor rotation and proton flux. The maximum torque the bacterial flagellar motor generates, the stall torque, is a critical parameter that describes the motor energetics. As the motor operates in equilibrium near stall, from the stall torque one can determine how many protons each torque-generating unit (stator) of the motor passes per revolution and then test whether motor rotation and proton flux are tightly or loosely coupled, which has been controversial in recent years. Direct measurements performed 3 decades ago suffered from large uncertainties, and subsequently, only indirect measurements were attempted, obtaining a range of values inconsistent with the previous direct measurements. Here, we developed a method that used magnetic tweezers to perform motor resurrection experiments at stall, resulting in a direct precise measurement of the stall torque per stator. Our study resolved the previous inconsistencies and provided direct experimental support for the tight coupling mechanism between motor rotation and proton flux.
鞭毛马达驱动鞭毛丝的旋转,从而推动鞭毛细菌的游动。马达产生的最大扭矩,即失速扭矩,是马达功能的一个关键特征。30 年前进行的直接测量失速扭矩的实验受到了很大的实验不确定性的影响,此后只有间接测量。在这里,我们应用磁镊直接测量大肠杆菌中的失速扭矩。我们精确校准了磁镊的扭转刚度,并在失速时进行了马达复活实验,精确地确定了每个产生扭矩的单位(定子单元)的失速扭矩。从我们的测量结果来看,每个定子单元在每一步传递 2 个质子,这表明马达旋转和质子流之间存在紧密的耦合。细菌鞭毛马达产生的最大扭矩,即失速扭矩,是描述马达能量学的一个关键参数。由于马达在接近失速的平衡状态下工作,从失速扭矩可以确定每个产生扭矩的单元(定子)在每转中传递多少个质子,然后可以测试马达旋转和质子流之间的耦合是紧密还是松散,这在近年来一直存在争议。30 年前进行的直接测量受到了很大的不确定性的影响,此后,只有间接测量被尝试过,得到了一系列与以前的直接测量不一致的值。在这里,我们开发了一种使用磁镊在失速时进行马达复活实验的方法,从而可以直接精确地测量每个定子的失速扭矩。我们的研究解决了以前的不一致,并为马达旋转和质子流之间的紧密耦合机制提供了直接的实验支持。