Suppr超能文献

在霍伦糖尿病护理系统中使用IDx-DR设备对可转诊糖尿病视网膜病变进行自动筛查的验证。

Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System.

作者信息

van der Heijden Amber A, Abramoff Michael D, Verbraak Frank, van Hecke Manon V, Liem Albert, Nijpels Giel

机构信息

Department of General Practice and Elderly Care Medicine, VU University Medical Centre, Amsterdam, the Netherlands.

Amsterdam Public Health Research Institute, VU University Medical Centre, Amsterdam, the Netherlands.

出版信息

Acta Ophthalmol. 2018 Feb;96(1):63-68. doi: 10.1111/aos.13613. Epub 2017 Nov 27.

Abstract

PURPOSE

To increase the efficiency of retinal image grading, algorithms for automated grading have been developed, such as the IDx-DR 2.0 device. We aimed to determine the ability of this device, incorporated in clinical work flow, to detect retinopathy in persons with type 2 diabetes.

METHODS

Retinal images of persons treated by the Hoorn Diabetes Care System (DCS) were graded by the IDx-DR device and independently by three retinal specialists using the International Clinical Diabetic Retinopathy severity scale (ICDR) and EURODIAB criteria. Agreement between specialists was calculated. Results of the IDx-DR device and experts were compared using sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV), distinguishing between referable diabetic retinopathy (RDR) and vision-threatening retinopathy (VTDR). Area under the receiver operating characteristic curve (AUC) was calculated.

RESULTS

Of the included 1415 persons, 898 (63.5%) had images of sufficient quality according to the experts and the IDx-DR device. Referable diabetic retinopathy (RDR) was diagnosed in 22 persons (2.4%) using EURODIAB and 73 persons (8.1%) using ICDR classification. Specific intergrader agreement ranged from 40% to 61%. Sensitivity, specificity, PPV and NPV of IDx-DR to detect RDR were 91% (95% CI: 0.69-0.98), 84% (95% CI: 0.81-0.86), 12% (95% CI: 0.08-0.18) and 100% (95% CI: 0.99-1.00; EURODIAB) and 68% (95% CI: 0.56-0.79), 86% (95% CI: 0.84-0.88), 30% (95% CI: 0.24-0.38) and 97% (95% CI: 0.95-0.98; ICDR). The AUC was 0.94 (95% CI: 0.88-1.00; EURODIAB) and 0.87 (95% CI: 0.83-0.92; ICDR). For detection of VTDR, sensitivity was lower and specificity was higher compared to RDR. AUC's were comparable.

CONCLUSION

Automated grading using the IDx-DR device for RDR detection is a valid method and can be used in primary care, decreasing the demand on ophthalmologists.

摘要

目的

为提高视网膜图像分级效率,已开发出自动分级算法,如IDx-DR 2.0设备。我们旨在确定该设备融入临床工作流程后检测2型糖尿病患者视网膜病变的能力。

方法

由Hoorn糖尿病护理系统(DCS)治疗的患者的视网膜图像由IDx-DR设备进行分级,并由三位视网膜专家独立使用国际临床糖尿病视网膜病变严重程度量表(ICDR)和欧洲糖尿病研究组(EURODIAB)标准进行分级。计算专家之间的一致性。使用灵敏度、特异度、阳性预测值(PPV)和阴性预测值(NPV)比较IDx-DR设备和专家的结果,区分可转诊糖尿病视网膜病变(RDR)和威胁视力的视网膜病变(VTDR)。计算受试者操作特征曲线(AUC)下的面积。

结果

在纳入的1415名患者中,根据专家和IDx-DR设备的评估,898名(63.5%)患者的图像质量足够。使用EURODIAB标准诊断出22名(2.4%)患者患有可转诊糖尿病视网膜病变(RDR),使用ICDR分类诊断出73名(8.1%)患者患有该疾病。分级者之间的具体一致性范围为40%至61%。IDx-DR检测RDR的灵敏度、特异度、PPV和NPV分别为91%(95%CI:0.69-0.98)、84%(95%CI:0.81-0.86)、12%(95%CI:0.08-0.18)和100%(95%CI:0.99-1.00;EURODIAB),以及68%(95%CI:0.56-0.79)、86%(95%CI:0.84-0.88)、30%(95%CI:0.24-0.38)和97%(95%CI:0.95-0.98;ICDR)。AUC为0.94(95%CI:0.88-1.00;EURODIAB)和0.87(95%CI:0.8-0.92;ICDR)。对于VTDR的检测,与RDR相比,灵敏度较低,特异度较高。AUC具有可比性。

结论

使用IDx-DR设备进行自动分级以检测RDR是一种有效的方法,可用于初级保健,减少对眼科医生的需求。

相似文献

10
Automated Identification of Diabetic Retinopathy Using Deep Learning.基于深度学习的糖尿病视网膜病变自动识别。
Ophthalmology. 2017 Jul;124(7):962-969. doi: 10.1016/j.ophtha.2017.02.008. Epub 2017 Mar 27.

引用本文的文献

2
Multilingual Virtual Healthcare Assistant.多语言虚拟医疗助手。
Health Care Sci. 2025 Jul 31;4(4):281-288. doi: 10.1002/hcs2.70031. eCollection 2025 Aug.
5
Classifying sex with volume-matched brain MRI.利用体积匹配的脑部磁共振成像对性别进行分类。
Neuroimage Rep. 2023 Jul 20;3(3):100181. doi: 10.1016/j.ynirp.2023.100181. eCollection 2023 Sep.
6
Role of artificial intelligence in revolutionizing drug discovery.人工智能在变革药物研发中的作用。
Fundam Res. 2024 May 9;5(3):1273-1287. doi: 10.1016/j.fmre.2024.04.021. eCollection 2025 May.
7
Telemedicine in ophthalmology.眼科远程医疗
Wien Med Wochenschr. 2025 May;175(7-8):153-161. doi: 10.1007/s10354-025-01081-z. Epub 2025 Apr 14.

本文引用的文献

2
Ten Emerging Trends in the Epidemiology of Diabetic Retinopathy.糖尿病视网膜病变流行病学的十大新趋势
Ophthalmic Epidemiol. 2016 Aug;23(4):209-22. doi: 10.1080/09286586.2016.1193618. Epub 2016 Jun 29.
6
Automated detection of retinal disease.视网膜疾病的自动检测。
Am J Manag Care. 2014 Nov;20(11 Spec No. 17):eSP48-52.
8
Global estimates of diabetes prevalence for 2013 and projections for 2035.全球 2013 年糖尿病患病率估计值及 2035 年预测值。
Diabetes Res Clin Pract. 2014 Feb;103(2):137-49. doi: 10.1016/j.diabres.2013.11.002. Epub 2013 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验