Suppr超能文献

血管的多功能拓扑优化。

Multi-functional topology optimization of veins.

机构信息

Department of Engineering Mechanics, AML, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.

Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.

出版信息

J R Soc Interface. 2022 Jun;19(191):20220298. doi: 10.1098/rsif.2022.0298. Epub 2022 Jun 15.

Abstract

The growth and development of biological tissues and organs strongly depend on the requirements of their multiple functions. Plant veins yield efficient nutrient transport and withstand various external loads. , a tropical species of the Nymphaeaceae family of water lilies, has evolved a network of three-dimensional and rugged veins, which yields a superior load-bearing capacity. However, it remains elusive how biological and mechanical factors affect their unique vein layout. In this paper, we propose a multi-functional and large-scale topology optimization method to investigate the morphomechanics of veins, which optimizes both the structural stiffness and nutrient transport efficiency. Our results suggest that increasing the branching order of radial veins improves the efficiency of nutrient delivery, and the gradient variation of circumferential vein sizes significantly contributes to the stiffness of the leaf. In the present method, we also consider the optimization of the wall thickness and the maximum layout distance of circumferential veins. Furthermore, biomimetic leaves are fabricated by using the three-dimensional printing technique to verify our theoretical findings. This work not only gains insights into the morphomechanics of veins, but also helps the design of, for example, rib-reinforced shells, slabs and dome skeletons.

摘要

生物组织和器官的生长和发育强烈依赖于它们多种功能的需求。植物叶脉能够高效地运输养分,并承受各种外部负载。 ,是睡莲科的一种热带物种,已经进化出了三维的粗糙叶脉网络,具有卓越的承载能力。然而,生物和力学因素如何影响其独特的叶脉布局仍然难以捉摸。在本文中,我们提出了一种多功能和大规模的拓扑优化方法来研究叶脉的形态力学,该方法同时优化了结构刚度和养分运输效率。我们的结果表明,增加径向叶脉的分支数可以提高养分输送效率,而周向叶脉大小的梯度变化对叶片的刚度有显著贡献。在本方法中,我们还考虑了周向叶脉的壁厚和最大布局间距的优化。此外,我们还使用三维打印技术制造了仿生叶片,以验证我们的理论发现。这项工作不仅深入了解了 叶脉的形态力学,还有助于肋增强壳、板和穹顶骨架等的设计。

相似文献

1
Multi-functional topology optimization of veins.血管的多功能拓扑优化。
J R Soc Interface. 2022 Jun;19(191):20220298. doi: 10.1098/rsif.2022.0298. Epub 2022 Jun 15.
2
Topology of leaf veins: Experimental observation and computational morphogenesis.叶片脉络的拓扑结构:实验观测与计算形态发生
J Mech Behav Biomed Mater. 2021 Nov;123:104788. doi: 10.1016/j.jmbbm.2021.104788. Epub 2021 Aug 19.

本文引用的文献

1
Activity-induced instabilities of brain organoids.脑类器官的活动诱导不稳定性。
Eur Phys J E Soft Matter. 2021 Dec 7;44(12):147. doi: 10.1140/epje/s10189-021-00149-z.
2
Topology of leaf veins: Experimental observation and computational morphogenesis.叶片脉络的拓扑结构:实验观测与计算形态发生
J Mech Behav Biomed Mater. 2021 Nov;123:104788. doi: 10.1016/j.jmbbm.2021.104788. Epub 2021 Aug 19.
3
Extreme flow simulations reveal skeletal adaptations of deep-sea sponges.极端流模拟揭示深海海绵的骨骼适应性。
Nature. 2021 Jul;595(7868):537-541. doi: 10.1038/s41586-021-03658-1. Epub 2021 Jul 21.
5
Mechanical forces in avian embryo development.鸟类胚胎发育中的力学。
Semin Cell Dev Biol. 2021 Dec;120:133-146. doi: 10.1016/j.semcdb.2021.06.001. Epub 2021 Jun 17.
7
Flow-Driven Branching in a Frangible Porous Medium.可破碎多孔介质中的流动驱动分岔。
Phys Rev Lett. 2020 Oct 9;125(15):158002. doi: 10.1103/PhysRevLett.125.158002.
8
Mechanically robust lattices inspired by deep-sea glass sponges.受深海玻璃海绵启发的机械坚固晶格。
Nat Mater. 2021 Feb;20(2):237-241. doi: 10.1038/s41563-020-0798-1. Epub 2020 Sep 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验