Suppr超能文献

长途跋涉回家:麦哲伦企鹅有策略,可以引导它们到达最能有效导航的区域。

Long walk home: Magellanic penguins have strategies that lead them to areas where they can navigate most efficiently.

机构信息

Instituto de Biología de Organismos Marinos (IBIOMAR), CONICET. Boulevard Brown 2915, U9120ACD Puerto Madryn, Chubut, Argentina.

Departamento de Ecología, Genética y Evolución and Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET, Pabellón II Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.

出版信息

Proc Biol Sci. 2022 Jun 8;289(1976):20220535. doi: 10.1098/rspb.2022.0535. Epub 2022 Jun 15.

Abstract

Understanding how animals move in dense environments where vision is compromised is a major challenge. We used GPS and dead-reckoning to examine the movement of Magellanic penguins commuting through vegetation that precluded long-distance vision. Birds leaving the nest followed the shortest, quickest route to the sea (the 'ideal path', or '') but return tracks depended where the birds left the water. Penguins arriving at the beach departure spot mirrored the departure. Most of those landing at a distance from the departure spot travelled slowly, obliquely to the coast at a more acute angle than a beeline trajectory to the nest. On crossing their , these birds then followed this route quickly to their nests. This movement strategy saves birds distance, time and energy compared to a route along the beach and the into the colony on the and saves time and energy compared to a beeline trajectory which necessitates slow travel in unfamiliar areas. This suggests that some animals adopt tactics that take them to an area where their navigational capacities are enhanced for efficient travel in challenging environments.

摘要

了解动物在视觉受限的密集环境中如何移动是一个主要挑战。我们使用 GPS 和航位推算来研究麦哲伦企鹅在穿过限制远距离视觉的植被时的迁徙活动。离开巢穴的鸟类会选择最短、最快的路线前往大海(“理想路径”,或“最短路径”),但返回的路线取决于鸟类离开水面的位置。到达海滩出发点的企鹅会模仿出发时的路线。大多数远离出发点降落的企鹅会以较慢的速度、以比直线到巢穴的角度更陡的角度斜向海岸移动。当它们越过这个障碍物时,这些鸟会迅速沿着这条路线飞回巢穴。与沿着海滩的路线以及进入内陆的路线相比,这种运动策略可以节省鸟类的距离、时间和能量,与需要在不熟悉的区域缓慢移动的直线轨迹相比,这种策略也可以节省时间和能量。这表明,一些动物会采取一些策略,将它们带到一个可以增强导航能力的区域,以便在具有挑战性的环境中高效移动。

相似文献

1
Long walk home: Magellanic penguins have strategies that lead them to areas where they can navigate most efficiently.
Proc Biol Sci. 2022 Jun 8;289(1976):20220535. doi: 10.1098/rspb.2022.0535. Epub 2022 Jun 15.
4
Detection of paramyxoviruses in Magellanic penguins (Spheniscus magellanicus) on the Brazilian tropical coast.
Vet Microbiol. 2012 May 4;156(3-4):429-33. doi: 10.1016/j.vetmic.2011.11.026. Epub 2011 Dec 2.
5
Two different avipoxviruses associated with pox disease in Magellanic penguins (Spheniscus magellanicus) along the Brazilian coast.
Avian Pathol. 2013 Dec;42(6):546-51. doi: 10.1080/03079457.2013.849794. Epub 2013 Oct 28.
6
Occurrence of tissue cyst forming coccidia in Magellanic penguins (Spheniscus magellanicus) rescued on the coast of Brazil.
PLoS One. 2018 Dec 18;13(12):e0209007. doi: 10.1371/journal.pone.0209007. eCollection 2018.
7
Postmortem findings in Magellanic penguins (Spheniscus magellanicus) caught in a drift gillnet.
BMC Vet Res. 2020 May 24;16(1):153. doi: 10.1186/s12917-020-02363-x.
8
Marine debris ingestion by Magellanic penguins, Spheniscus magellanicus (Aves: Sphenisciformes), from the Brazilian coastal zone.
Mar Pollut Bull. 2011 Oct;62(10):2246-9. doi: 10.1016/j.marpolbul.2011.07.016. Epub 2011 Aug 23.

引用本文的文献

1
Penguins exploit tidal currents for efficient navigation and opportunistic foraging.
PLoS Biol. 2025 Jul 17;23(7):e3002981. doi: 10.1371/journal.pbio.3002981. eCollection 2025 Jul.

本文引用的文献

1
Big-data approaches lead to an increased understanding of the ecology of animal movement.
Science. 2022 Feb 18;375(6582):eabg1780. doi: 10.1126/science.abg1780.
2
How often should dead-reckoned animal movement paths be corrected for drift?
Anim Biotelemetry. 2021 Oct 16;9:43. doi: 10.1186/s40317-021-00265-9.
3
Animal Navigation: Seabirds Home to a Moving Magnetic Target.
Curr Biol. 2020 Jul 20;30(14):R802-R804. doi: 10.1016/j.cub.2020.05.061.
4
Principles of Insect Path Integration.
Curr Biol. 2018 Sep 10;28(17):R1043-R1058. doi: 10.1016/j.cub.2018.04.058.
5
Feasibility of sun and magnetic compass mechanisms in avian long-distance migration.
Mov Ecol. 2018 Jun 6;6:8. doi: 10.1186/s40462-018-0126-4. eCollection 2018.
6
How animals follow the stars.
Proc Biol Sci. 2018 Jan 31;285(1871). doi: 10.1098/rspb.2017.2322.
7
Asymmetry hidden in birds' tracks reveals wind, heading, and orientation ability over the ocean.
Sci Adv. 2017 Sep 27;3(9):e1700097. doi: 10.1126/sciadv.1700097. eCollection 2017 Sep.
8
Phylogenetic comparisons of pedestrian locomotion costs: confirmations and new insights.
Ecol Evol. 2016 Aug 31;6(18):6712-6720. doi: 10.1002/ece3.2267. eCollection 2016 Sep.
9
Vocal individuality and species divergence in the contact calls of banded penguins.
Behav Processes. 2016 Jul;128:83-8. doi: 10.1016/j.beproc.2016.04.010. Epub 2016 Apr 19.
10
Population regulation in Magellanic penguins: what determines changes in colony size?
PLoS One. 2015 Mar 18;10(3):e0119002. doi: 10.1371/journal.pone.0119002. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验