Civil and Environmental Engineering, Colorado School of Minesgrid.254549.b, Golden, Colorado, USA.
Rocky Mountain Research Station, USDA Forest Service, Fort Collins, Colorado, USA.
Appl Environ Microbiol. 2022 Jul 12;88(13):e0034322. doi: 10.1128/aem.00343-22. Epub 2022 Jun 15.
Wildfires are a perennial event globally, and the biogeochemical underpinnings of soil responses at relevant spatial and temporal scales are unclear. Soil biogeochemical processes regulate plant growth and nutrient losses that affect water quality, yet the response of soil after variable intensity fire is difficult to explain and predict. To address this issue, we examined two wildfires in Colorado, United States, across the first and second postfire years and leveraged statistical learning (SL) to predict and explain biogeochemical responses. We found that SL predicts biogeochemical responses in soil after wildfire with surprising accuracy. Of the 13 biogeochemical analytes analyzed in this study, 9 are best explained with a hybrid microbiome + biogeochemical SL model. Biogeochemical-only models best explain 3 features, and 1 feature is explained equally well with the hybrid and biogeochemical-only models. In some cases, microbiome-only SL models are also effective (such as predicting NH). Whenever a microbiome component is employed, selected features always involve uncommon soil microbiota (i.e., the "rare biosphere" [existing at <1% mean relative abundance]). Here, we demonstrate that SL paired with DNA sequence and biogeochemical data predicts environmental features in postfire soils, although this approach could likely be applied to any biogeochemical system. Soil biogeochemical processes are critical to plant growth and water quality and are substantially disturbed by wildfire. However, soil responses to fire are difficult to predict. To address this issue, we developed a large environmental data set that tracks postfire changes in soil and used statistical learning (SL) to build models that exploit complex data to make predictions about biogeochemical responses. Here, we show that SL depends upon uncommon microbiota in soil (the "rare biosphere") to make surprisingly accurate predictions about soil biogeochemical responses to wildfire. Using SL to explain variation in a natively chaotic environmental system is mechanism independent. Likely, the approach that we describe for combining SL with microbiome and biogeochemical parameters has practical applications across a range of issues in the environmental sciences where predicting responses would be useful.
野火在全球范围内是一种常年发生的事件,而相关时空尺度上土壤响应的生物地球化学基础尚不清楚。土壤生物地球化学过程调节着植物生长和养分损失,从而影响水质,但很难解释和预测经过不同强度火灾后的土壤反应。为了解决这个问题,我们在美国科罗拉多州的两场野火后的第一和第二年进行了调查,并利用统计学习(SL)来预测和解释生物地球化学响应。我们发现,SL 可以非常准确地预测野火后的土壤生物地球化学响应。在本研究中分析的 13 种生物地球化学分析物中,有 9 种最好用混合微生物组+生物地球化学 SL 模型来解释。仅生物地球化学模型最好地解释了 3 个特征,而 1 个特征可以用混合模型和生物地球化学模型同样好地解释。在某些情况下,微生物组仅 SL 模型也很有效(例如预测 NH)。只要使用微生物组组件,所选特征始终涉及不常见的土壤微生物群(即“稀有生物圈”[存在于<1%的平均相对丰度])。在这里,我们证明了与 DNA 序列和生物地球化学数据相结合的 SL 可以预测火灾后土壤中的环境特征,尽管这种方法可能适用于任何生物地球化学系统。土壤生物地球化学过程对植物生长和水质至关重要,并且受到野火的严重干扰。然而,土壤对火灾的反应很难预测。为了解决这个问题,我们开发了一个大型环境数据集,该数据集跟踪火灾后土壤的变化,并使用统计学习(SL)来建立模型,利用复杂的数据对生物地球化学响应进行预测。在这里,我们表明,SL 依赖于土壤中的不常见微生物群落(“稀有生物圈”),从而对野火后土壤生物地球化学响应做出惊人准确的预测。使用 SL 来解释自然混沌环境系统中的变化是与机制无关的。可能,我们描述的将 SL 与微生物组和生物地球化学参数结合的方法在环境科学中具有广泛的应用,在这些领域中,预测响应将是有用的。