Suppr超能文献

应对未来的大流行:非生物复杂药物如何为应对抗微生物药物耐药性威胁做好准备?

Addressing a future pandemic: how can non-biological complex drugs prepare us for antimicrobial resistance threats?

机构信息

CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.

CSIRO Health & Biosecurity, Clunies Ross Street, Black Mountain, ACT 2601, Australia.

出版信息

Mater Horiz. 2022 Aug 1;9(8):2076-2096. doi: 10.1039/d2mh00254j.

Abstract

Loss of effective antibiotics through antimicrobial resistance (AMR) is one of the greatest threats to human health. By 2050, the annual death rate resulting from AMR infections is predicted to have climbed from 1.27 million per annum in 2019, up to 10 million per annum. It is therefore imperative to preserve the effectiveness of both existing and future antibiotics, such that they continue to save lives. One way to conserve the use of existing antibiotics and build further contingency against resistant strains is to develop alternatives. Non-biological complex drugs (NBCDs) are an emerging class of therapeutics that show multi-mechanistic antimicrobial activity and hold great promise as next generation antimicrobial agents. We critically outline the focal advancements for each key material class, including antimicrobial polymer materials, carbon nanomaterials, and inorganic nanomaterials, and highlight the potential for the development of antimicrobial resistance against each class. Finally, we outline remaining challenges for their clinical translation, including the need for specific regulatory pathways to be established in order to allow for more efficient clinical approval and adoption of these new technologies.

摘要

抗生素耐药性(AMR)导致有效抗生素的丧失是对人类健康的最大威胁之一。到 2050 年,预计由 AMR 感染导致的年死亡率将从 2019 年的每年 127 万人上升到每年 1000 万人。因此,必须保留现有和未来抗生素的有效性,以使其继续拯救生命。保存现有抗生素的使用并针对耐药菌株建立进一步应对措施的一种方法是开发替代品。非生物复杂药物(NBCD)是一类新兴的治疗药物,具有多种机制的抗菌活性,有望成为下一代抗菌药物。我们批判性地概述了每个关键材料类别的焦点进展,包括抗菌聚合物材料、碳纳米材料和无机纳米材料,并强调了针对每种类别开发抗菌耐药性的潜力。最后,我们概述了它们临床转化的剩余挑战,包括需要建立特定的监管途径,以便更有效地批准和采用这些新技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验