Suppr超能文献

使用生物信息学分析鉴定与膀胱癌相关的枢纽基因。

Identification of hub genes associated with bladder cancer using bioinformatic analyses.

作者信息

Zheng Wei, Zhao Yubo, Wang Tengshuang, Zhao Xiaoling, Tan Zhangsen

机构信息

Senior Department of Oncology, the Sixth Center of PLA General Hospital, Beijing, China.

Department of Urology, Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing, China.

出版信息

Transl Cancer Res. 2022 May;11(5):1330-1343. doi: 10.21037/tcr-22-1004.

Abstract

BACKGROUND

Bladder cancer (BLCA) is the ninth most common cancer worldwide, with high mortality and recurrence rates. Studies have increasingly reported that molecular diagnosis contributes to the early diagnosis and prognostic assessment of diseases. Thus, this study aims to find new biomarkers for the diagnosis and prognosis of BLCA.

METHODS

The microarray datasets GSE147983 and The Cancer Genome Atlas (TCGA)-BLCA mRNA were obtained from the Gene Expression Omnibus (GEO) and TCGA. Differentially expressed genes (DEGs) were screened using the R "Limma" package. The "ClusterProfiler" package was used to conduct Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DEGs. A DEG protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized using Cytoscape. The functional module was reanalyzed using Cytoscape's Molecular Complex Detection ("MCODE") plugin, and key genes related to BLCA were identified via the "cytoHubba" plugin. Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and the Tumor Immune Estimation Resource (TIMER) were used to verify the correlation between hub gene expression and immunity. A survival analysis of hub genes was performed using the Kaplan-Meier Plotter online tool.

RESULTS

A total of 355 DEGs were screened out, including 236 upregulated and 119 downregulated DEGs. Some of the GO terms and pathways, such as chromosome separation, cell cycle, and cell senescence, were found to be significantly enriched in the DEGs. The key genes were kinesin family member 11 (), DLG associated protein 5 (), non-SMC condensin I complex subunit G (), cell division cycle 20 (), cyclin B2 (), BUB1 mitotic checkpoint serine (), TPX2 microtubule nucleation factor (), NUF2 component of NDC80 kinetochore complex (), kinesin family member 2C (), and cyclin B1 (). Nine of them were immune-related, including , and . Survival analysis showed that the overexpression of BUB1B, CCNB1, CDC20, and DLGAP5 significantly reduced overall survival (OS) in patients with BLCA.

CONCLUSIONS

This study provided a theoretical basis for elucidating the pathogenesis and evaluating the prognosis of BLCA by screening potential biomarkers of BLCA.

摘要

背景

膀胱癌(BLCA)是全球第九大常见癌症,死亡率和复发率都很高。越来越多的研究报告称,分子诊断有助于疾病的早期诊断和预后评估。因此,本研究旨在寻找用于膀胱癌诊断和预后的新生物标志物。

方法

从基因表达综合数据库(GEO)和癌症基因组图谱(TCGA)中获取微阵列数据集GSE147983和TCGA-BLCA mRNA。使用R语言的“Limma”包筛选差异表达基因(DEG)。使用“ClusterProfiler”包对DEG进行基因本体论(GO)富集分析和京都基因与基因组百科全书(KEGG)通路分析。使用搜索相互作用基因的工具(STRING)数据库构建DEG蛋白质-蛋白质相互作用(PPI)网络,并使用Cytoscape进行可视化。使用Cytoscape的分子复合物检测(“MCODE”)插件对功能模块进行重新分析,并通过“cytoHubba”插件鉴定与膀胱癌相关的关键基因。使用基因表达谱交互式分析2(GEPIA)和肿瘤免疫估计资源(TIMER)验证枢纽基因表达与免疫之间的相关性。使用Kaplan-Meier Plotter在线工具对枢纽基因进行生存分析。

结果

共筛选出355个DEG,其中236个上调,119个下调。发现一些GO术语和通路,如染色体分离、细胞周期和细胞衰老,在DEG中显著富集。关键基因有驱动蛋白家族成员11( )、DLG相关蛋白5( )、非SMC凝聚素I复合物亚基G( )、细胞分裂周期20( )、细胞周期蛋白B2( )、BUB1有丝分裂检查点丝氨酸( )、TPX2微管成核因子( )、NDC80动粒复合物的NUF2成分( )、驱动蛋白家族成员2C( )和细胞周期蛋白B1( )。其中9个与免疫相关,包括 、 和 。生存分析表明,BUB1B、CCNB1、CDC20和DLGAP5的过表达显著降低了膀胱癌患者的总生存期(OS)。

结论

本研究通过筛选膀胱癌的潜在生物标志物,为阐明膀胱癌的发病机制和评估其预后提供了理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcf5/9189183/7960ee989189/tcr-11-05-1330-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验