Suppr超能文献

通过校准的凹凸过程构建的稀疏图形模型及其在功能磁共振成像数据中的应用

Sparse graphical models via calibrated concave convex procedure with application to fMRI data.

作者信息

Son Sungtaek, Park Cheolwoo, Jeon Yongho

机构信息

Department of Applied Statistics, Yonsei University, Seoul, South Korea.

Celltrion Inc., Incheon, South Korea.

出版信息

J Appl Stat. 2019 Sep 10;47(6):997-1016. doi: 10.1080/02664763.2019.1663158. eCollection 2020.

Abstract

This paper proposes a calibrated concave convex procedure (calibrated CCCP) for high-dimensional graphical model selection. The calibrated CCCP approach for the smoothly clipped absolute deviation (SCAD) penalty is known to be path-consistent with probability converging to one in linear regression models. We implement the calibrated CCCP method with the SCAD penalty for the graphical model selection. We use a quadratic objective function for undirected Gaussian graphical models and adopt the SCAD penalty for sparse estimation. For the tuning procedure, we propose to use columnwise tuning on the quadratic objective function adjusted for test data. In a simulation study, we compare the performance of the proposed method with two existing graphical model estimators for high-dimensional data in terms of matrix error norms and support recovery rate. We also compare the bias and the variance of the estimated matrices. Then, we apply the method to functional magnetic resonance imaging (fMRI) data of an attention deficit hyperactivity disorders (ADHD) patient.

摘要

本文提出了一种用于高维图形模型选择的校准凹凸过程(校准CCCP)。已知用于平滑截断绝对偏差(SCAD)惩罚的校准CCCP方法在概率上收敛于线性回归模型中的1且路径一致。我们将带SCAD惩罚的校准CCCP方法应用于图形模型选择。对于无向高斯图形模型,我们使用二次目标函数,并采用SCAD惩罚进行稀疏估计。对于调优过程,我们建议对针对测试数据调整后的二次目标函数使用按列调优。在一项模拟研究中,我们根据矩阵误差范数和支持恢复率,将所提出方法的性能与两种现有的高维数据图形模型估计器进行比较。我们还比较了估计矩阵的偏差和方差。然后,我们将该方法应用于一名注意力缺陷多动障碍(ADHD)患者的功能磁共振成像(fMRI)数据。

相似文献

1
Sparse graphical models via calibrated concave convex procedure with application to fMRI data.
J Appl Stat. 2019 Sep 10;47(6):997-1016. doi: 10.1080/02664763.2019.1663158. eCollection 2020.
2
Sparse Graphical Models for Functional Connectivity Networks: Best Methods and the Autocorrelation Issue.
Brain Connect. 2018 Apr;8(3):139-165. doi: 10.1089/brain.2017.0511. Epub 2018 Mar 13.
3
Majorization Minimization by Coordinate Descent for Concave Penalized Generalized Linear Models.
Stat Comput. 2014 Sep;24(5):871-883. doi: 10.1007/s11222-013-9407-3.
4
Newton-Raphson Meets Sparsity: Sparse Learning Via a Novel Penalty and a Fast Solver.
IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):12057-12067. doi: 10.1109/TNNLS.2023.3251748. Epub 2024 Sep 3.
5
Sparse time series chain graphical models for reconstructing genetic networks.
Biostatistics. 2013 Jul;14(3):586-99. doi: 10.1093/biostatistics/kxt005. Epub 2013 Mar 5.
6
The graphical lasso: New insights and alternatives.
Electron J Stat. 2012 Nov 9;6:2125-2149. doi: 10.1214/12-EJS740.
7
Bayesian sparse graphical models and their mixtures.
Stat. 2014 Jan 1;3(1):109-125. doi: 10.1002/sta4.49.
8
CALIBRATING NON-CONVEX PENALIZED REGRESSION IN ULTRA-HIGH DIMENSION.
Ann Stat. 2013 Oct 1;41(5):2505-2536. doi: 10.1214/13-AOS1159.
9
Sparse Group Penalties for bi-level variable selection.
Biom J. 2024 Jun;66(4):e2200334. doi: 10.1002/bimj.202200334.
10
Tuning parameter estimation in SCAD-support vector machine using firefly algorithm with application in gene selection and cancer classification.
Comput Biol Med. 2018 Dec 1;103:262-268. doi: 10.1016/j.compbiomed.2018.10.034. Epub 2018 Oct 31.

本文引用的文献

2
Fast and Adaptive Sparse Precision Matrix Estimation in High Dimensions.
J Multivar Anal. 2015 Mar 1;135:153-162. doi: 10.1016/j.jmva.2014.11.005.
3
CALIBRATING NON-CONVEX PENALIZED REGRESSION IN ULTRA-HIGH DIMENSION.
Ann Stat. 2013 Oct 1;41(5):2505-2536. doi: 10.1214/13-AOS1159.
4
A novel sparse group Gaussian graphical model for functional connectivity estimation.
Inf Process Med Imaging. 2013;23:256-67. doi: 10.1007/978-3-642-38868-2_22.
5
A spectral graphical model approach for learning brain connectivity network of children's narrative comprehension.
Brain Connect. 2011;1(5):389-400. doi: 10.1089/brain.2011.0045. Epub 2011 Nov 21.
6
NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES.
Ann Appl Stat. 2009 Jun 1;3(2):521-541. doi: 10.1214/08-AOAS215SUPP.
7
Brain graphs: graphical models of the human brain connectome.
Annu Rev Clin Psychol. 2011;7:113-40. doi: 10.1146/annurev-clinpsy-040510-143934.
8
One-step Sparse Estimates in Nonconcave Penalized Likelihood Models.
Ann Stat. 2008 Aug 1;36(4):1509-1533. doi: 10.1214/009053607000000802.
9
Sparse inverse covariance estimation with the graphical lasso.
Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验