Son Sungtaek, Park Cheolwoo, Jeon Yongho
Department of Applied Statistics, Yonsei University, Seoul, South Korea.
Celltrion Inc., Incheon, South Korea.
J Appl Stat. 2019 Sep 10;47(6):997-1016. doi: 10.1080/02664763.2019.1663158. eCollection 2020.
This paper proposes a calibrated concave convex procedure (calibrated CCCP) for high-dimensional graphical model selection. The calibrated CCCP approach for the smoothly clipped absolute deviation (SCAD) penalty is known to be path-consistent with probability converging to one in linear regression models. We implement the calibrated CCCP method with the SCAD penalty for the graphical model selection. We use a quadratic objective function for undirected Gaussian graphical models and adopt the SCAD penalty for sparse estimation. For the tuning procedure, we propose to use columnwise tuning on the quadratic objective function adjusted for test data. In a simulation study, we compare the performance of the proposed method with two existing graphical model estimators for high-dimensional data in terms of matrix error norms and support recovery rate. We also compare the bias and the variance of the estimated matrices. Then, we apply the method to functional magnetic resonance imaging (fMRI) data of an attention deficit hyperactivity disorders (ADHD) patient.
本文提出了一种用于高维图形模型选择的校准凹凸过程(校准CCCP)。已知用于平滑截断绝对偏差(SCAD)惩罚的校准CCCP方法在概率上收敛于线性回归模型中的1且路径一致。我们将带SCAD惩罚的校准CCCP方法应用于图形模型选择。对于无向高斯图形模型,我们使用二次目标函数,并采用SCAD惩罚进行稀疏估计。对于调优过程,我们建议对针对测试数据调整后的二次目标函数使用按列调优。在一项模拟研究中,我们根据矩阵误差范数和支持恢复率,将所提出方法的性能与两种现有的高维数据图形模型估计器进行比较。我们还比较了估计矩阵的偏差和方差。然后,我们将该方法应用于一名注意力缺陷多动障碍(ADHD)患者的功能磁共振成像(fMRI)数据。