Suppr超能文献

通过校准的凹凸过程构建的稀疏图形模型及其在功能磁共振成像数据中的应用

Sparse graphical models via calibrated concave convex procedure with application to fMRI data.

作者信息

Son Sungtaek, Park Cheolwoo, Jeon Yongho

机构信息

Department of Applied Statistics, Yonsei University, Seoul, South Korea.

Celltrion Inc., Incheon, South Korea.

出版信息

J Appl Stat. 2019 Sep 10;47(6):997-1016. doi: 10.1080/02664763.2019.1663158. eCollection 2020.

Abstract

This paper proposes a calibrated concave convex procedure (calibrated CCCP) for high-dimensional graphical model selection. The calibrated CCCP approach for the smoothly clipped absolute deviation (SCAD) penalty is known to be path-consistent with probability converging to one in linear regression models. We implement the calibrated CCCP method with the SCAD penalty for the graphical model selection. We use a quadratic objective function for undirected Gaussian graphical models and adopt the SCAD penalty for sparse estimation. For the tuning procedure, we propose to use columnwise tuning on the quadratic objective function adjusted for test data. In a simulation study, we compare the performance of the proposed method with two existing graphical model estimators for high-dimensional data in terms of matrix error norms and support recovery rate. We also compare the bias and the variance of the estimated matrices. Then, we apply the method to functional magnetic resonance imaging (fMRI) data of an attention deficit hyperactivity disorders (ADHD) patient.

摘要

本文提出了一种用于高维图形模型选择的校准凹凸过程(校准CCCP)。已知用于平滑截断绝对偏差(SCAD)惩罚的校准CCCP方法在概率上收敛于线性回归模型中的1且路径一致。我们将带SCAD惩罚的校准CCCP方法应用于图形模型选择。对于无向高斯图形模型,我们使用二次目标函数,并采用SCAD惩罚进行稀疏估计。对于调优过程,我们建议对针对测试数据调整后的二次目标函数使用按列调优。在一项模拟研究中,我们根据矩阵误差范数和支持恢复率,将所提出方法的性能与两种现有的高维数据图形模型估计器进行比较。我们还比较了估计矩阵的偏差和方差。然后,我们将该方法应用于一名注意力缺陷多动障碍(ADHD)患者的功能磁共振成像(fMRI)数据。

相似文献

6
The graphical lasso: New insights and alternatives.图形套索:新见解与替代方法。
Electron J Stat. 2012 Nov 9;6:2125-2149. doi: 10.1214/12-EJS740.

本文引用的文献

2
Fast and Adaptive Sparse Precision Matrix Estimation in High Dimensions.
J Multivar Anal. 2015 Mar 1;135:153-162. doi: 10.1016/j.jmva.2014.11.005.
7
Brain graphs: graphical models of the human brain connectome.脑图谱:人类脑连接组的图形模型。
Annu Rev Clin Psychol. 2011;7:113-40. doi: 10.1146/annurev-clinpsy-040510-143934.
9
Sparse inverse covariance estimation with the graphical lasso.使用图模型选择法进行稀疏逆协方差估计。
Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验