Suppr超能文献

缺失原因下区间删失竞争风险数据的分析

Analysis of interval-censored competing risks data under missing causes.

作者信息

Mitra Debanjan, Das Ujjwal, Das Kalyan

机构信息

Operations Management, Quantitative Methods and Information Systems Area, Indian Institute of Management Udaipur, Udaipur, India.

Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, India.

出版信息

J Appl Stat. 2019 Jul 16;47(3):439-459. doi: 10.1080/02664763.2019.1642309. eCollection 2020.

Abstract

In this article, interval-censored competing risks data are analyzed when some of the causes of failure are missing. The vertical modeling approach has been proposed here. This approach utilizes the data to extract information to the maximum possible extent especially when some causes of failure are missing. The maximum likelihood estimates of the model parameters are obtained. The asymptotic confidence intervals for the model parameters are constructed using approaches based on observed Fisher information matrix, and parametric bootstrap. A simulation study is considered in detail to assess the performance of the point and interval estimators. It is observed that the proposed analysis performs better than the complete case analysis. This establishes the fact that the our methodology is an extremely useful technique for interval-censored competing risks data when some of the causes of failure are missing. Such analysis seems to be quite useful for smaller sample sizes where complete case analysis may have a significant impact on the inferential procedures. Through Monte Carlo simulations, the effect of a possible model misspecification is also assessed on the basis of the cumulative incidence function. For illustration purposes, three datasets are analyzed and in all cases the conclusion appears to be quite realistic.

摘要

在本文中,当某些失败原因缺失时,对区间删失的竞争风险数据进行了分析。这里提出了纵向建模方法。这种方法利用数据尽可能多地提取信息,特别是当某些失败原因缺失时。获得了模型参数的最大似然估计。使用基于观测费希尔信息矩阵和参数自助法的方法构建了模型参数的渐近置信区间。详细考虑了一项模拟研究,以评估点估计和区间估计的性能。据观察,所提出的分析比完整病例分析表现更好。这确立了这样一个事实,即当某些失败原因缺失时,我们的方法对于区间删失的竞争风险数据是一种极其有用的技术。这种分析对于较小样本量似乎非常有用,因为完整病例分析可能会对推断程序产生重大影响。通过蒙特卡罗模拟,还基于累积发病率函数评估了可能的模型误设的影响。为了说明目的,分析了三个数据集,在所有情况下结论似乎都相当现实。

相似文献

1
Analysis of interval-censored competing risks data under missing causes.
J Appl Stat. 2019 Jul 16;47(3):439-459. doi: 10.1080/02664763.2019.1642309. eCollection 2020.
2
Inference of progressively type-II censored competing risks data from Chen distribution with an application.
J Appl Stat. 2020 Sep 5;47(13-15):2492-2524. doi: 10.1080/02664763.2020.1815670. eCollection 2020.
3
Inference for partially observed competing risks model for Kumaraswamy distribution under generalized progressive hybrid censoring.
J Appl Stat. 2021 Feb 23;49(8):2064-2092. doi: 10.1080/02664763.2021.1889999. eCollection 2022.
4
Parametric likelihood inference for interval censored competing risks data.
Biometrics. 2014 Mar;70(1):1-9. doi: 10.1111/biom.12109. Epub 2014 Jan 8.
5
Semiparametric competing risks regression under interval censoring using the R package intccr.
Comput Methods Programs Biomed. 2019 May;173:167-176. doi: 10.1016/j.cmpb.2019.03.002. Epub 2019 Mar 8.
6
Inference on a progressive type I interval-censored truncated normal distribution.
J Appl Stat. 2019 Oct 17;47(8):1402-1422. doi: 10.1080/02664763.2019.1679096. eCollection 2020.
9
Semiparametric regression analysis of interval-censored competing risks data.
Biometrics. 2017 Sep;73(3):857-865. doi: 10.1111/biom.12664. Epub 2017 Feb 17.
10
The Fine-Gray Model Under Interval Censored Competing Risks Data.
J Multivar Anal. 2016 Jan 1;143:327-344. doi: 10.1016/j.jmva.2015.10.001.

引用本文的文献

1
Multiple imputation strategies for a bounded outcome variable in a competing risks analysis.
Stat Med. 2021 Apr 15;40(8):1917-1929. doi: 10.1002/sim.8879. Epub 2021 Jan 19.

本文引用的文献

1
Semiparametric regression on cumulative incidence function with interval-censored competing risks data.
Stat Med. 2017 Oct 15;36(23):3683-3707. doi: 10.1002/sim.7350. Epub 2017 Jun 12.
2
The Fine-Gray Model Under Interval Censored Competing Risks Data.
J Multivar Anal. 2016 Jan 1;143:327-344. doi: 10.1016/j.jmva.2015.10.001.
3
Parametric likelihood inference for interval censored competing risks data.
Biometrics. 2014 Mar;70(1):1-9. doi: 10.1111/biom.12109. Epub 2014 Jan 8.
5
A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions.
J Clin Epidemiol. 2013 Jun;66(6):648-53. doi: 10.1016/j.jclinepi.2012.09.017. Epub 2013 Feb 14.
6
Vertical modelling: Analysis of competing risks data with missing causes of failure.
Stat Methods Med Res. 2015 Dec;24(6):891-908. doi: 10.1177/0962280211432067. Epub 2011 Dec 16.
7
Modelling competing risks data with missing cause of failure.
Stat Med. 2010 Dec 30;29(30):3172-85. doi: 10.1002/sim.4133.
8
Vertical modeling: a pattern mixture approach for competing risks modeling.
Stat Med. 2010 May 20;29(11):1190-205. doi: 10.1002/sim.3844.
9
Parametric regression on cumulative incidence function.
Biostatistics. 2007 Apr;8(2):184-96. doi: 10.1093/biostatistics/kxj040. Epub 2006 Apr 24.
10
Inference for the dependent competing risks model with masked causes of failure.
Lifetime Data Anal. 2006 Mar;12(1):21-33. doi: 10.1007/s10985-005-7218-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验