Jeong Jong-Hyeon, Fine Jason P
Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA.
Biostatistics. 2007 Apr;8(2):184-96. doi: 10.1093/biostatistics/kxj040. Epub 2006 Apr 24.
We propose parametric regression analysis of cumulative incidence function with competing risks data. A simple form of Gompertz distribution is used for the improper baseline subdistribution of the event of interest. Maximum likelihood inferences on regression parameters and associated cumulative incidence function are developed for parametric models, including a flexible generalized odds rate model. Estimation of the long-term proportion of patients with cause-specific events is straightforward in the parametric setting. Simple goodness-of-fit tests are discussed for evaluating a fixed odds rate assumption. The parametric regression methods are compared with an existing semiparametric regression analysis on a breast cancer data set where the cumulative incidence of recurrence is of interest. The results demonstrate that the likelihood-based parametric analyses for the cumulative incidence function are a practically useful alternative to the semiparametric analyses.
我们提出了针对具有竞争风险数据的累积发病率函数的参数回归分析方法。一种简单形式的冈珀茨分布用于感兴趣事件的不恰当基线子分布。针对参数模型,包括灵活的广义优势率模型,开发了关于回归参数和相关累积发病率函数的最大似然推断。在参数设置中,估计特定病因事件患者的长期比例很简单。讨论了用于评估固定优势率假设的简单拟合优度检验。在一个关注复发累积发病率的乳腺癌数据集上,将参数回归方法与现有的半参数回归分析进行了比较。结果表明,基于似然的累积发病率函数参数分析是半参数分析的一种切实可行的替代方法。