Suppr超能文献

具有自适应核缩放的支持向量机在前列腺癌图像研究中的应用

Adaptive kernel scaling support vector machine with application to a prostate cancer image study.

作者信息

Liu Xin, He Wenqing

机构信息

Department of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, People's Republic of China.

Department of Statistical and Actuarial Sciences, University of Western Ontario, London, ON, Canada.

出版信息

J Appl Stat. 2021 Jan 8;49(6):1465-1484. doi: 10.1080/02664763.2020.1870669. eCollection 2022.

Abstract

The support vector machine (SVM) is a popularly used classifier in applications such as pattern recognition, texture mining and image retrieval owing to its flexibility and interpretability. However, its performance deteriorates when the response classes are imbalanced. To enhance the performance of the support vector machine classifier in the imbalanced cases we investigate a new two stage method by adaptively scaling the kernel function. Based on the information obtained from the standard SVM in the first stage, we conformally rescale the kernel function in a data adaptive fashion in the second stage so that the separation between two classes can be effectively enlarged with incorporation of observation imbalance. The proposed method takes into account the location of the support vectors in the feature space, therefore is especially appealing when the response classes are imbalanced. The resulting algorithm can efficiently improve the classification accuracy, which is confirmed by intensive numerical studies as well as a real prostate cancer imaging data application.

摘要

支持向量机(SVM)因其灵活性和可解释性,在模式识别、纹理挖掘和图像检索等应用中是一种广泛使用的分类器。然而,当响应类别不平衡时,其性能会下降。为了提高支持向量机分类器在不平衡情况下的性能,我们研究了一种通过自适应缩放核函数的新的两阶段方法。基于第一阶段从标准支持向量机获得的信息,我们在第二阶段以数据自适应的方式对核函数进行共形缩放,以便在考虑观测不平衡的情况下有效地扩大两类之间的分离。所提出的方法考虑了特征空间中支持向量的位置,因此在响应类别不平衡时特别有吸引力。大量的数值研究以及实际前列腺癌成像数据应用证实,所得算法能够有效地提高分类准确率。

相似文献

2
Vicinal support vector classifier using supervised kernel-based clustering.基于监督核聚类的邻接支持向量分类器。
Artif Intell Med. 2014 Mar;60(3):189-96. doi: 10.1016/j.artmed.2014.01.003. Epub 2014 Feb 7.
6
Classification of Imbalanced Data by Oversampling in Kernel Space of Support Vector Machines.支持向量机核空间中基于过采样的不平衡数据分类
IEEE Trans Neural Netw Learn Syst. 2018 Sep;29(9):4065-4076. doi: 10.1109/TNNLS.2017.2751612. Epub 2017 Oct 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验