Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France.
Biomacromolecules. 2022 Aug 8;23(8):3043-3080. doi: 10.1021/acs.biomac.2c00230. Epub 2022 Jun 15.
Polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) techniques have emerged as powerful approaches to produce a broad range of advanced synthetic nano-objects with high potential in biomedical applications. PISA produces nano-objects of different morphologies (e.g., spheres, vesicles and worms), with high solids content (∼10-50 wt %) and without additional surfactant. CDSA can finely control the self-assembly of block copolymers and readily forms nonspherical crystalline nano-objects and more complex, hierarchical assemblies, with spatial and dimensional control over particle length or surface area, which is typically difficult to achieve by PISA. Considering the importance of these two assembly techniques in the current scientific landscape of block copolymer self-assembly and the craze for their use in the biomedical field, this review will focus on the advances in PISA and CDSA to produce nano-objects suitable for biomedical applications in terms of (bio)degradability and biocompatibility. This review will therefore discuss these two aspects in order to guide the future design of block copolymer nanoparticles for future translation toward clinical applications.
聚合诱导自组装(PISA)和结晶驱动自组装(CDSA)技术已经成为制备具有广泛应用前景的新型生物医学应用的先进合成纳米结构的强大方法。PISA 可以制备出具有不同形态(如球体、囊泡和蠕虫)的纳米结构,具有较高的固体含量(~10-50wt%),且无需额外的表面活性剂。CDSA 可以精细控制嵌段共聚物的自组装,并易于形成非球形的结晶纳米结构和更复杂的层次组装,对颗粒长度或表面积具有空间和尺寸控制,这通常很难通过 PISA 实现。鉴于这两种组装技术在当前嵌段共聚物自组装科学领域的重要性以及在生物医学领域对其应用的狂热,本综述将重点介绍 PISA 和 CDSA 在制备适合生物医学应用的纳米结构方面的进展,包括(生物)降解性和生物相容性。因此,本综述将讨论这两个方面,以指导未来用于临床应用的嵌段共聚物纳米颗粒的设计。