Suppr超能文献

新冠疫情期间社交媒体用户对可穿戴混合现实头显的认知:基于方面的情感分析

Social Media Users' Perceptions of a Wearable Mixed Reality Headset During the COVID-19 Pandemic: Aspect-Based Sentiment Analysis.

作者信息

Jeong Heejin, Bayro Allison, Umesh Sai Patipati, Mamgain Kaushal, Lee Moontae

机构信息

Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL, United States.

Richard and Loan Hill Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States.

出版信息

JMIR Serious Games. 2022 Aug 4;10(3):e36850. doi: 10.2196/36850.

Abstract

BACKGROUND

Mixed reality (MR) devices provide real-time environments for physical-digital interactions across many domains. Owing to the unprecedented COVID-19 pandemic, MR technologies have supported many new use cases in the health care industry, enabling social distancing practices to minimize the risk of contact and transmission. Despite their novelty and increasing popularity, public evaluations are sparse and often rely on social interactions among users, developers, researchers, and potential buyers.

OBJECTIVE

The purpose of this study is to use aspect-based sentiment analysis to explore changes in sentiment during the onset of the COVID-19 pandemic as new use cases emerged in the health care industry; to characterize net insights for MR developers, researchers, and users; and to analyze the features of HoloLens 2 (Microsoft Corporation) that are helpful for certain fields and purposes.

METHODS

To investigate the user sentiment, we collected 8492 tweets on a wearable MR headset, HoloLens 2, during the initial 10 months since its release in late 2019, coinciding with the onset of the pandemic. Human annotators rated the individual tweets as positive, negative, neutral, or inconclusive. Furthermore, by hiring an interannotator to ensure agreements between the annotators, we used various word vector representations to measure the impact of specific words on sentiment ratings. Following the sentiment classification for each tweet, we trained a model for sentiment analysis via supervised learning.

RESULTS

The results of our sentiment analysis showed that the bag-of-words tokenizing method using a random forest supervised learning approach produced the highest accuracy of the test set at 81.29%. Furthermore, the results showed an apparent change in sentiment during the COVID-19 pandemic period. During the onset of the pandemic, consumer goods were severely affected, which aligns with a drop in both positive and negative sentiment. Following this, there is a sudden spike in positive sentiment, hypothesized to be caused by the new use cases of the device in health care education and training. This pandemic also aligns with drastic changes in the increased number of practical insights for MR developers, researchers, and users and positive net sentiments toward the HoloLens 2 characteristics.

CONCLUSIONS

Our approach suggests a simple yet effective way to survey public opinion about new hardware devices quickly. The findings of this study contribute to a holistic understanding of public perception and acceptance of MR technologies during the COVID-19 pandemic and highlight several new implementations of HoloLens 2 in health care. We hope that these findings will inspire new use cases and technological features.

摘要

背景

混合现实(MR)设备为跨多个领域的物理-数字交互提供实时环境。由于前所未有的新冠疫情,MR技术在医疗行业支持了许多新的用例,使得社交距离措施得以实施,以尽量降低接触和传播风险。尽管其新颖性和受欢迎程度不断提高,但公众评估却很少,且往往依赖于用户、开发者、研究人员和潜在买家之间的社交互动。

目的

本研究的目的是使用基于方面的情感分析来探索在新冠疫情爆发期间,随着医疗行业出现新的用例,情感的变化;刻画MR开发者、研究人员和用户的净见解;并分析HoloLens 2(微软公司)对某些领域和目的有帮助的功能特性。

方法

为了调查用户情绪,我们在可穿戴MR头显HoloLens 2于2019年末发布后的最初10个月内收集了8492条推文,这与疫情爆发时间相符。人工标注者将每条推文评为积极、消极、中性或无结论。此外,通过雇佣一名相互标注者以确保标注者之间的一致性,我们使用了各种词向量表示来衡量特定词汇对情绪评分的影响。在对每条推文进行情绪分类后,我们通过监督学习训练了一个情绪分析模型。

结果

我们的情绪分析结果表明,使用随机森林监督学习方法的词袋分词方法在测试集上的准确率最高,为81.29%。此外,结果显示在新冠疫情期间情绪有明显变化。在疫情爆发初期,消费品受到严重影响,这与积极和消极情绪的下降相一致。在此之后,积极情绪突然激增,据推测这是由该设备在医疗教育培训中的新用例导致的。这场疫情还与MR开发者、研究人员和用户的实际见解数量的急剧变化以及对HoloLens 2功能特性的积极净情绪相一致。

结论

我们的方法提出了一种简单而有效的方式来快速调查公众对新硬件设备看法。本研究结果有助于全面理解新冠疫情期间公众对MR技术的认知和接受情况,并突出了HoloLens 2在医疗保健中的几个新应用。我们希望这些发现能激发新的用例和技术特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef4/9359310/d9f62d459bbd/games_v10i3e36850_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验