Suppr超能文献

利用 APACHE II、APACHE III 和 SAPS II 评分预测 ICU 住院时间延长的模型:一项日本多中心回顾性队列研究。

Predict models for prolonged ICU stay using APACHE II, APACHE III and SAPS II scores: A Japanese multicenter retrospective cohort study.

机构信息

Department of Anesthesiology, Graduate School of Medicine, The Hirosaki University, Hirosaki, Japan.

Department of Healthcare Quality Assessment, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

出版信息

PLoS One. 2022 Jun 16;17(6):e0269737. doi: 10.1371/journal.pone.0269737. eCollection 2022.

Abstract

Prolonged ICU stays are associated with high costs and increased mortality. Thus, early prediction of such stays would help clinicians to plan initial interventions, which could lead to efficient utilization of ICU resources. The aim of this study was to develop models for predicting prolonged stays in Japanese ICUs using APACHE II, APACHE III and SAPS II scores. In this multicenter retrospective cohort study, we analyzed the cases of 85,558 patients registered in the Japanese Intensive care Patient Database between 2015 and 2019. Prolonged ICU stay was defined as an ICU stay of >14 days. Multivariable logistic regression analyses were performed to develop three predictive models for prolonged ICU stay using APACHE II, APACHE III and SAPS II scores, respectively. After exclusions, 79,620 patients were analyzed, 2,364 of whom (2.97%) experienced prolonged ICU stays. Multivariable logistic regression analyses showed that severity scores, BMI, MET/RRT, postresuscitation, readmission, length of stay before ICU admission, and diagnosis at ICU admission were significantly associated with higher risk of prolonged ICU stay in all models. The present study developed predictive models for prolonged ICU stay using severity scores. These models may be helpful for efficient utilization of ICU resources.

摘要

延长的 ICU 住院时间与高成本和高死亡率相关。因此,早期预测此类住院时间将有助于临床医生规划初始干预措施,从而有效利用 ICU 资源。本研究旨在使用 APACHE II、APACHE III 和 SAPS II 评分开发预测日本 ICU 患者延长住院时间的模型。在这项多中心回顾性队列研究中,我们分析了 2015 年至 2019 年期间在日本重症监护患者数据库中登记的 85558 例患者的病例。延长 ICU 住院时间定义为 ICU 住院时间>14 天。使用 APACHE II、APACHE III 和 SAPS II 评分分别进行多变量逻辑回归分析,以开发三种用于预测 ICU 延长住院时间的预测模型。排除后,对 79620 例患者进行了分析,其中 2364 例(2.97%)经历了 ICU 延长住院时间。多变量逻辑回归分析表明,严重程度评分、BMI、MET/RRT、复苏后、再入院、入住 ICU 前的住院时间和 ICU 入院时的诊断与所有模型中 ICU 延长住院时间的风险增加显著相关。本研究使用严重程度评分开发了 ICU 延长住院时间的预测模型。这些模型可能有助于 ICU 资源的有效利用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8085/9202898/1680c2be5196/pone.0269737.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验