文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于夏普利加性解释的因子分析在使用XGBoost预测ICU中脓毒症相关性脑病死亡率中的应用——一项基于两个大型数据库的回顾性研究

Factor analysis based on SHapley Additive exPlanations for sepsis-associated encephalopathy in ICU mortality prediction using XGBoost - a retrospective study based on two large database.

作者信息

Guo Jiayu, Cheng Hongtao, Wang Zicheng, Qiao Mengmeng, Li Jing, Lyu Jun

机构信息

Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China.

School of Public Health, Shannxi University of Chinese Medicine, Xianyang, China.

出版信息

Front Neurol. 2023 Dec 14;14:1290117. doi: 10.3389/fneur.2023.1290117. eCollection 2023.


DOI:10.3389/fneur.2023.1290117
PMID:38162445
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10755941/
Abstract

OBJECTIVE: Sepsis-associated encephalopathy (SAE) is strongly linked to a high mortality risk, and frequently occurs in conjunction with the acute and late phases of sepsis. The objective of this study was to construct and verify a predictive model for mortality in ICU-dwelling patients with SAE. METHODS: The study selected 7,576 patients with SAE from the MIMIC-IV database according to the inclusion criteria and randomly divided them into training ( = 5,303, 70%) and internal validation ( = 2,273, 30%) sets. According to the same criteria, 1,573 patients from the eICU-CRD database were included as an external test set. Independent risk factors for ICU mortality were identified using Extreme Gradient Boosting (XGBoost) software, and prediction models were constructed and verified using the validation set. The receiver operating characteristic (ROC) and the area under the ROC curve (AUC) were used to evaluate the discrimination ability of the model. The SHapley Additive exPlanations (SHAP) approach was applied to determine the Shapley values for specific patients, account for the effects of factors attributed to the model, and examine how specific traits affect the output of the model. RESULTS: The survival rate of patients with SAE in the MIMIC-IV database was 88.6% and that of 1,573 patients in the eICU-CRD database was 89.1%. The ROC of the XGBoost model indicated good discrimination. The AUCs for the training, test, and validation sets were 0.908, 0.898, and 0.778, respectively. The impact of each parameter on the XGBoost model was depicted using a SHAP plot, covering both positive (acute physiology score III, vasopressin, age, red blood cell distribution width, partial thromboplastin time, and norepinephrine) and negative (Glasgow Coma Scale) ones. CONCLUSION: A prediction model developed using XGBoost can accurately predict the ICU mortality of patients with SAE. The SHAP approach can enhance the interpretability of the machine-learning model and support clinical decision-making.

摘要

目的:脓毒症相关脑病(SAE)与高死亡风险密切相关,且常与脓毒症的急性期和后期同时发生。本研究的目的是构建并验证重症监护病房(ICU)中SAE患者死亡率的预测模型。 方法:本研究根据纳入标准从MIMIC-IV数据库中选取7576例SAE患者,并将其随机分为训练集(n = 5303,70%)和内部验证集(n = 2273,30%)。按照相同标准,将来自eICU-CRD数据库的1573例患者纳入作为外部测试集。使用极端梯度提升(XGBoost)软件确定ICU死亡率的独立危险因素,并使用验证集构建和验证预测模型。采用受试者工作特征(ROC)曲线及曲线下面积(AUC)评估模型的区分能力。应用SHapley加性解释(SHAP)方法确定特定患者的Shapley值,解释模型中各因素的影响,并研究特定特征如何影响模型输出。 结果:MIMIC-IV数据库中SAE患者的生存率为88.6%,eICU-CRD数据库中1573例患者的生存率为89.1%。XGBoost模型的ROC曲线显示出良好的区分度。训练集、测试集和验证集的AUC分别为0.908、0.898和0.778。使用SHAP图描绘了每个参数对XGBoost模型的影响,涵盖了正向(急性生理评分III、血管加压素、年龄、红细胞分布宽度、活化部分凝血活酶时间和去甲肾上腺素)和负向(格拉斯哥昏迷量表)参数。 结论:使用XGBoost开发的预测模型能够准确预测SAE患者的ICU死亡率。SHAP方法可提高机器学习模型的可解释性,并支持临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0085/10755941/2f7e8df656b0/fneur-14-1290117-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0085/10755941/517830193b0f/fneur-14-1290117-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0085/10755941/835c751553e2/fneur-14-1290117-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0085/10755941/c981313b581f/fneur-14-1290117-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0085/10755941/55863b832da1/fneur-14-1290117-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0085/10755941/94d6687feb44/fneur-14-1290117-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0085/10755941/2f7e8df656b0/fneur-14-1290117-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0085/10755941/517830193b0f/fneur-14-1290117-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0085/10755941/835c751553e2/fneur-14-1290117-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0085/10755941/c981313b581f/fneur-14-1290117-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0085/10755941/55863b832da1/fneur-14-1290117-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0085/10755941/94d6687feb44/fneur-14-1290117-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0085/10755941/2f7e8df656b0/fneur-14-1290117-g006.jpg

相似文献

[1]
Factor analysis based on SHapley Additive exPlanations for sepsis-associated encephalopathy in ICU mortality prediction using XGBoost - a retrospective study based on two large database.

Front Neurol. 2023-12-14

[2]
Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation.

Eur J Med Res. 2024-1-3

[3]
Interpretable machine learning for predicting 28-day all-cause in-hospital mortality for hypertensive ischemic or hemorrhagic stroke patients in the ICU: a multi-center retrospective cohort study with internal and external cross-validation.

Front Neurol. 2023-8-8

[4]
Machine learning-based in-hospital mortality risk prediction tool for intensive care unit patients with heart failure.

Front Cardiovasc Med. 2023-4-3

[5]
Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases.

Front Cardiovasc Med. 2022-10-12

[6]
Enhancing predictions with a stacking ensemble model for ICU mortality risk in patients with sepsis-associated encephalopathy.

J Int Med Res. 2024-3

[7]
Development and Validation of Machine Learning Models for Real-Time Mortality Prediction in Critically Ill Patients With Sepsis-Associated Acute Kidney Injury.

Front Med (Lausanne). 2022-6-15

[8]
Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study.

J Med Internet Res. 2022-8-9

[9]
Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach.

J Transl Med. 2023-6-22

[10]
The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models.

Eur J Med Res. 2023-1-18

引用本文的文献

[1]
Diagnostic models for sepsis-associated encephalopathy: a comprehensive systematic review and meta-analysis.

Front Neurol. 2025-7-31

[2]
Interpretable machine learning-based prediction of mortality in critical cancer patients with delirium: A retrospective cohort study.

Asia Pac J Oncol Nurs. 2025-7-19

[3]
Early prediction of sepsis associated encephalopathy in elderly ICU patients using machine learning models: a retrospective study based on the MIMIC-IV database.

Front Cell Infect Microbiol. 2025-4-17

[4]
Enhanced machine learning predictive modeling for delirium in elderly ICU patients with COPD and respiratory failure: A retrospective study based on MIMIC-IV.

PLoS One. 2025-3-20

[5]
Central Thalamic Deep Brain Stimulation Modulates Autonomic Nervous System Responsiveness in Disorders of Consciousness.

CNS Neurosci Ther. 2025-3

[6]
Interpretable machine learning-based prediction of 28-day mortality in ICU patients with sepsis: a multicenter retrospective study.

Front Cell Infect Microbiol. 2025-1-8

[7]
Comprehensive risk factor-based nomogram for predicting one-year mortality in patients with sepsis-associated encephalopathy.

Sci Rep. 2024-10-14

[8]
Characteristics and risk factors for invasive fungal infection in hospitalized patients with acute-on-chronic hepatitis B liver failure: a retrospective cohort study from 2010 to 2023.

Front Microbiol. 2024-3-27

本文引用的文献

[1]
Sepsis-Induced Brain Dysfunction: Pathogenesis, Diagnosis, and Treatment.

Oxid Med Cell Longev. 2022

[2]
Extreme gradient boosting model to assess risk of central cervical lymph node metastasis in patients with papillary thyroid carcinoma: Individual prediction using SHapley Additive exPlanations.

Comput Methods Programs Biomed. 2022-10

[3]
Predict models for prolonged ICU stay using APACHE II, APACHE III and SAPS II scores: A Japanese multicenter retrospective cohort study.

PLoS One. 2022

[4]
Red blood cell distribution width as prognostic factor in sepsis: A new use for a classical parameter.

J Crit Care. 2022-10

[5]
Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021.

Intensive Care Med. 2021-11

[6]
Sepsis-Associated Encephalopathy and Blood-Brain Barrier Dysfunction.

Inflammation. 2021-12

[7]
Red Cell Distribution Width As a Predictor of Mortality in Patients With Sepsis.

Cureus. 2021-1-25

[8]
Predicting mortality of patients with acute kidney injury in the ICU using XGBoost model.

PLoS One. 2021

[9]
A retrospective study of sepsis-associated encephalopathy: epidemiology, clinical features and adverse outcomes.

BMC Emerg Med. 2020-10-6

[10]
Vasopressor Therapy in the Intensive Care Unit.

Semin Respir Crit Care Med. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索