Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544, USA.
Science. 2022 Jul 15;377(6603):307-310. doi: 10.1126/science.abn5679. Epub 2022 Jun 16.
To understand degradation routes and improve the stability of perovskite solar cells (PSCs), accelerated aging tests are needed. Here, we use elevated temperatures (up to 110°C) to quantify the accelerated degradation of encapsulated CsPbI PSCs under constant illumination. Incorporating a two-dimensional (2D) CsPbICl capping layer between the perovskite active layer and hole-transport layer stabilizes the interface while increasing power conversion efficiency of the all-inorganic PSCs from 14.9 to 17.4%. Devices with this 2D capping layer did not degrade at 35°C and required >2100 hours at 110°C under constant illumination to degrade by 20% of their initial efficiency. Degradation acceleration factors based on the observed Arrhenius temperature dependence predict intrinsic lifetimes of 51,000 ± 7000 hours (>5 years) operating continuously at 35°C.
为了了解降解途径并提高钙钛矿太阳能电池(PSCs)的稳定性,需要进行加速老化测试。在这里,我们使用升高的温度(高达 110°C)来量化在恒定光照下封装的 CsPbI PSCs 的加速降解。在钙钛矿活性层和空穴传输层之间引入二维(2D)CsPbICl 盖帽层可以稳定界面,同时将全无机 PSCs 的功率转换效率从 14.9%提高到 17.4%。具有这种 2D 盖帽层的器件在 35°C 下不会降解,并且在恒定光照下需要 >110°C 2100 小时才能将初始效率降低 20%。基于观察到的 Arrhenius 温度依赖性的降解加速因子预测,在 35°C 下连续运行时的固有寿命为 51000 ± 7000 小时(>5 年)。