Suppr超能文献

协调神经元迁移和皮层折叠:计算与实验研究。

Orchestrated neuronal migration and cortical folding: A computational and experimental study.

机构信息

Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America.

Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.

出版信息

PLoS Comput Biol. 2022 Jun 16;18(6):e1010190. doi: 10.1371/journal.pcbi.1010190. eCollection 2022 Jun.

Abstract

Brain development involves precisely orchestrated genetic, biochemical, and mechanical events. At the cellular level, neuronal proliferation in the innermost zone of the brain followed by migration towards the outermost layer results in a rapid increase in brain surface area, outpacing the volumetric growth of the brain, and forming the highly folded cortex. This work aims to provide mechanistic insights into the process of brain development and cortical folding using a biomechanical model that couples cell division and migration with volumetric growth. Unlike phenomenological growth models, our model tracks the spatio-temporal development of cohorts of neurons born at different times, with each cohort modeled separately as an advection-diffusion process and the total cell density determining the extent of volume growth. We numerically implement our model in Abaqus/Standard (2020) by writing user-defined element (UEL) subroutines. For model calibration, we apply in utero electroporation (IUE) to ferret brains to visualize and track cohorts of neurons born at different stages of embryonic development. Our calibrated simulations of cortical folding align qualitatively with the ferret experiments. We have made our experimental data and finite-element implementation available online to offer other researchers a modeling platform for future study of neurological disorders associated with atypical neurodevelopment and cortical malformations.

摘要

脑发育涉及精确协调的遗传、生化和机械事件。在细胞水平上,大脑最内层的神经元增殖,然后迁移到最外层,导致脑表面积迅速增加,超过了脑的体积增长,并形成高度褶皱的皮层。这项工作旨在使用一种将细胞分裂和迁移与体积生长相结合的生物力学模型,为脑发育和皮层折叠的过程提供机制上的见解。与现象学生长模型不同,我们的模型跟踪在不同时间出生的神经元群体的时空发育,每个群体分别作为平流-扩散过程进行建模,并且总细胞密度决定体积生长的程度。我们通过编写用户定义的元素 (UEL) 子程序在 Abaqus/Standard (2020) 中实现我们的模型。为了模型校准,我们对雪貂大脑进行宫内电穿孔 (IUE),以可视化和跟踪在胚胎发育的不同阶段出生的神经元群体。我们对皮层折叠的校准模拟与雪貂实验定性一致。我们已经在线提供了我们的实验数据和有限元实现,为其他研究人员提供了一个建模平台,用于未来研究与非典型神经发育和皮层畸形相关的神经紊乱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0094/9258886/9b3135e1ceb2/pcbi.1010190.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验