Suppr超能文献

基于稀疏表示的脑肿瘤影像组学诊断。

Sparse Representation-Based Radiomics for the Diagnosis of Brain Tumors.

出版信息

IEEE Trans Med Imaging. 2018 Apr;37(4):893-905. doi: 10.1109/TMI.2017.2776967.

Abstract

Brain tumors are the most common malignant neurologic tumors with the highest mortality and disability rate. Because of the delicate structure of the brain, the clinical use of several commonly used biopsy diagnosis is limited for brain tumors. Radiomics is an emerging technique for noninvasive diagnosis based on quantitative medical image analyses. However, current radiomics techniques are not standardized regarding feature extraction, feature selection, and decision making. In this paper, we propose a sparse representation-based radiomics (SRR) system for the diagnosis of brain tumors. First, we developed a dictionary learning- and sparse representation-based feature extraction method that exploits the statistical characteristics of the lesion area, leading to fine and more effective feature extraction compared with the traditional explicitly calculation-based methods. Then, we set up an iterative sparse representation method to solve the redundancy problem of the extracted features. Finally, we proposed a novel multi-feature collaborative sparse representation classification framework that introduces a new coefficient of regularization term to combine features from multi-modal images at the sparse representation coefficient level. Two clinical problems were used to validate the performance and usefulness of the proposed SRR system. One was the differential diagnosis between primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM), and the other was isocitrate dehydrogenase 1 estimation for gliomas. The SRR system had superior PCNSL and GBM differentiation performance compared with some advanced imaging techniques and yielded 11% better performance for estimating IDH1 compared with the traditional radiomics methods.

摘要

脑肿瘤是最常见的恶性神经肿瘤,死亡率和致残率最高。由于大脑结构精细,几种常用的活检诊断方法在临床应用中受到限制。放射组学是一种基于定量医学图像分析的新兴非侵入性诊断技术。然而,目前的放射组学技术在特征提取、特征选择和决策方面没有标准化。在本文中,我们提出了一种基于稀疏表示的放射组学(SRR)系统,用于脑肿瘤的诊断。首先,我们开发了一种基于字典学习和稀疏表示的特征提取方法,利用病变区域的统计特征,与传统的显式计算方法相比,实现了更精细、更有效的特征提取。然后,我们建立了一种迭代稀疏表示方法来解决提取特征的冗余问题。最后,我们提出了一种新的多特征协同稀疏表示分类框架,在稀疏表示系数水平上引入新的正则化项系数,将多模态图像的特征结合起来。利用两个临床问题验证了所提出的 SRR 系统的性能和实用性。一个是原发性中枢神经系统淋巴瘤(PCNSL)和胶质母细胞瘤(GBM)的鉴别诊断,另一个是对胶质瘤异柠檬酸脱氢酶 1 的估计。与一些先进的成像技术相比,SRR 系统在 PCNSL 和 GBM 鉴别方面表现出更好的性能,与传统的放射组学方法相比,IDH1 的估计性能提高了 11%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验