Suppr超能文献

分支驱动着装配线生物合成的进化。

Bifurcation drives the evolution of assembly-line biosynthesis.

机构信息

Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK.

School of Molecular Sciences, University of Western Australia, Crawley, WA, 6009, Australia.

出版信息

Nat Commun. 2022 Jun 17;13(1):3498. doi: 10.1038/s41467-022-30950-z.

Abstract

Reprogramming biosynthetic assembly-lines is a topic of intense interest. This is unsurprising as the scaffolds of most antibiotics in current clinical use are produced by such pathways. The modular nature of assembly-lines provides a direct relationship between the sequence of enzymatic domains and the chemical structure of the product, but rational reprogramming efforts have been met with limited success. To gain greater insight into the design process, we wanted to examine how Nature creates assembly-lines and searched for biosynthetic pathways that might represent evolutionary transitions. By examining the biosynthesis of the anti-tubercular wollamides, we uncover how whole gene duplication and neofunctionalization can result in pathway bifurcation. We show that, in the case of the wollamide biosynthesis, neofunctionalization is initiated by intragenomic recombination. This pathway bifurcation leads to redundancy, providing the genetic robustness required to enable large structural changes during the evolution of antibiotic structures. Should the new product be non-functional, gene loss can restore the original genotype. However, if the new product confers an advantage, depreciation and eventual loss of the original gene creates a new linear pathway. This provides the blind watchmaker equivalent to the design, build, test cycle of synthetic biology.

摘要

重新编程生物合成装配线是一个备受关注的话题。这并不奇怪,因为目前临床使用的大多数抗生素的支架都是通过这些途径产生的。装配线的模块化性质为酶结构域的序列和产物的化学结构之间提供了直接的关系,但合理的重新编程努力取得的成功有限。为了更深入地了解设计过程,我们想研究自然界如何创造装配线,并寻找可能代表进化转变的生物合成途径。通过研究抗结核沃拉明的生物合成,我们揭示了整个基因复制和新功能化如何导致途径分支。我们表明,在沃拉明生物合成的情况下,新功能化是由基因组内重组引发的。这种途径分支导致了冗余,为抗生素结构进化过程中发生的大型结构变化提供了所需的遗传稳健性。如果新产品没有功能,基因丢失可以恢复原始基因型。然而,如果新产品赋予了优势,原始基因的折旧和最终丢失会创建一个新的线性途径。这为盲目钟表匠提供了相当于合成生物学的设计、构建、测试周期。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2306/9205934/3cf0c8324ad4/41467_2022_30950_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验