Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
Georg-Elias-Mueller Institute of Psychology, University of Goettingen, Göttingen, Germany.
Sci Rep. 2022 Jun 17;12(1):10198. doi: 10.1038/s41598-022-13866-y.
Neurorehabilitation in patients suffering from motor deficits relies on relearning or re-adapting motor skills. Yet our understanding of motor learning is based mostly on results from one or two-dimensional experimental paradigms with highly confined movements. Since everyday movements are conducted in three-dimensional space, it is important to further our understanding about the effect that gravitational forces or perceptual anisotropy might or might not have on motor learning along all different dimensions relative to the body. Here we test how well existing concepts of motor learning generalize to movements in 3D. We ask how a subject's variability in movement planning and sensory perception influences motor adaptation along three different body axes. To extract variability and relate it to adaptation rate, we employed a novel hierarchical two-state space model using Bayesian modeling via Hamiltonian Monte Carlo procedures. Our results show that differences in adaptation rate occur between the coronal, sagittal and horizontal planes and can be explained by the Kalman gain, i.e., a statistically optimal solution integrating planning and sensory information weighted by the inverse of their variability. This indicates that optimal integration theory for error correction holds for 3D movements and explains adaptation rate variation between movements in different planes.
神经康复依赖于重新学习或重新适应运动技能,适用于患有运动缺陷的患者。然而,我们对运动学习的理解主要基于一到二维的实验范式,这些范式具有高度受限的运动。由于日常运动是在三维空间中进行的,因此了解重力或感知各向异性可能对相对于身体的所有不同维度的运动学习有影响或没有影响非常重要。在这里,我们测试现有运动学习概念在三维运动中概括的程度。我们询问运动规划和感官感知的个体差异如何影响三个不同身体轴线上的运动适应。为了提取可变性并将其与适应率相关联,我们使用了一种新颖的层次二状态空间模型,该模型使用通过 Hamiltonian Monte Carlo 过程的贝叶斯建模来实现。我们的结果表明,在冠状面、矢状面和水平面之间存在适应率的差异,并且可以通过卡尔曼增益来解释,即一种统计上最优的解决方案,通过规划和感官信息的加权,根据它们的可变性的倒数来整合信息。这表明,用于错误校正的最优整合理论适用于三维运动,并解释了不同平面运动之间的适应率变化。