Suppr超能文献

使用多元对应分析和随机森林分析识别南非夸祖鲁-纳塔尔省与 HIV 病毒载量高相关的潜在因素。

Identifying Potential Factors Associated with High HIV viral load in KwaZulu-Natal, South Africa using Multiple Correspondence Analysis and Random Forest Analysis.

机构信息

School of Mathematics, Statistics and Computer Science, College of Agriculture Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.

Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.

出版信息

BMC Med Res Methodol. 2022 Jun 17;22(1):174. doi: 10.1186/s12874-022-01625-6.

Abstract

BACKGROUND

Sustainable Human Immunodeficiency Virus (HIV) virological suppression is crucial to achieving the Joint United Nations Programme of HIV/AIDS (UNAIDS) 95-95-95 treatment targets to reduce the risk of onward HIV transmission. Exploratory data analysis is an integral part of statistical analysis which aids variable selection from complex survey data for further confirmatory analysis.

METHODS

In this study, we divulge participants' epidemiological and biological factors with high HIV RNA viral load (HHVL) from an HIV Incidence Provincial Surveillance System (HIPSS) sequential cross-sectional survey between 2014 and 2015 KwaZulu-Natal, South Africa. Using multiple correspondence analysis (MCA) and random forest analysis (RFA), we analyzed the linkage between socio-demographic, behavioral, psycho-social, and biological factors associated with HHVL, defined as ≥400 copies per m/L.

RESULTS

Out of 3956 in 2014 and 3868 in 2015, 50.1% and 41% of participants, respectively, had HHVL. MCA and RFA revealed that knowledge of HIV status, ART use, ARV dosage, current CD4 cell count, perceived risk of contracting HIV, number of lifetime HIV tests, number of lifetime sex partners, and ever diagnosed with TB were consistent potential factors identified to be associated with high HIV viral load in the 2014 and 2015 surveys. Based on MCA findings, diverse categories of variables identified with HHVL were, did not know HIV status, not on ART, on multiple dosages of ARV, with less likely perceived risk of contracting HIV and having two or more lifetime sexual partners.

CONCLUSION

The high proportion of individuals with HHVL suggests that the UNAIDS 95-95-95 goal of HIV viral suppression is less likely to be achieved. Based on performance and visualization evaluation, MCA was selected as the best and essential exploration tool for identifying and understanding categorical variables' significant associations and interactions to enhance individual epidemiological understanding of high HIV viral load. When faced with complex survey data and challenges of variables selection in research, exploratory data analysis with robust graphical visualization and reliability that can reveal divers' structures should be considered.

摘要

背景

可持续的人类免疫缺陷病毒(HIV)病毒学抑制对于实现联合国艾滋病规划署(UNAIDS)95-95-95 治疗目标至关重要,该目标旨在降低艾滋病毒传播的风险。探索性数据分析是统计分析的一个组成部分,有助于从复杂的调查数据中选择变量,以便进一步进行确认性分析。

方法

在这项研究中,我们从南非夸祖鲁-纳塔尔省 2014 年至 2015 年期间的 HIV 发病率省级监测系统(HIPSS)连续横断面调查中,揭示了具有高 HIV RNA 病毒载量(HHVL)的参与者的流行病学和生物学因素。我们使用多元对应分析(MCA)和随机森林分析(RFA),分析了与 HHVL 相关的社会人口统计学、行为、心理社会和生物学因素之间的联系,HHVL 定义为≥400 拷贝/毫升。

结果

在 2014 年的 3956 名参与者和 2015 年的 3868 名参与者中,分别有 50.1%和 41%的参与者具有 HHVL。MCA 和 RFA 显示,HIV 感染状况的知识、抗逆转录病毒治疗(ART)的使用、抗逆转录病毒药物的剂量、当前的 CD4 细胞计数、感染 HIV 的感知风险、一生中接受 HIV 检测的次数、一生中性伴侣的数量以及曾经被诊断患有结核病,是与 2014 年和 2015 年调查中 HIV 病毒载量高相关的一致潜在因素。根据 MCA 的发现,与 HHVL 相关的变量的不同类别是不知道 HIV 感染状况、未接受 ART 治疗、接受多种抗逆转录病毒药物治疗、不太可能感知感染 HIV 的风险,以及有两个或更多的性伴侣。

结论

具有 HHVL 的个体比例较高表明,UNAIDS 95-95-95 病毒抑制目标不太可能实现。基于表现和可视化评估,MCA 被选为识别和理解分类变量显著关联和相互作用的最佳和基本探索工具,以增强对高 HIV 病毒载量的个体流行病学理解。当面对复杂的调查数据和研究中变量选择的挑战时,应该考虑使用具有强大图形可视化和可靠性的探索性数据分析,以揭示多样性结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6bb/9206247/b4ea76329e92/12874_2022_1625_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验