Bala Kabiru, Etikan Ilker, Usman A G, Abba S I
Biostatistics Department, Faculty of Medicine, Near East University, 99138 Nicosia, Cyprus.
Taraba State Polytechnic Suntai, Jalingo Campus, Howayi 660213, Taraba, Nigeria.
Life (Basel). 2023 Mar 6;13(3):715. doi: 10.3390/life13030715.
Antiretroviral therapy (ART) is the common hope for HIV/AIDS-treated patients. Total commitments from individuals and the entire community are the major challenges faced during treatment. This study investigated the progress of ART in the Federal Teaching Hospital in Gombe state, Nigeria by using various records of patients receiving treatment in the ART hospital unit. We combined artificial intelligence (AI)-based models and correspondence analysis (CA) techniques to predict and visualize the progress of ART from the beginning to the end. The AI models employed are artificial neural networks (ANNs), adaptive neuro-fuzzy inference systems (ANFISs) and support-vector machines (SVMs) and a classical linear regression model of multiple linear regression (MLR). According to the outcome of this study, ANFIS in both training and testing outperformed the remaining models given the R (0.903 and 0.904) and MSE (7.961 and 3.751) values, revealing that any increase in the number of years of taking ART medication will provide HIV/AIDS-treated patients with safer and elongated lives. The contingency results for the CA and the chi-square test did an excellent job of capturing and visualizing the patients on medication, which gave similar results in return, revealing there is a significant association between ART drugs and the age group, while the association between ART drugs and marital status (93.7%) explained a higher percentage of variation compared with the remaining variables.
抗逆转录病毒疗法(ART)是接受治疗的艾滋病毒/艾滋病患者的共同希望。个人和整个社区的全面投入是治疗过程中面临的主要挑战。本研究通过使用抗逆转录病毒治疗医院科室接受治疗患者的各种记录,调查了尼日利亚贡贝州联邦教学医院的抗逆转录病毒治疗进展情况。我们结合基于人工智能(AI)的模型和对应分析(CA)技术,来预测和可视化抗逆转录病毒治疗从开始到结束的进展。所采用的人工智能模型包括人工神经网络(ANNs)、自适应神经模糊推理系统(ANFISs)和支持向量机(SVMs)以及多元线性回归(MLR)的经典线性回归模型。根据本研究的结果,考虑到R值(分别为0.903和0.904)和均方误差(MSE,分别为7.961和3.751),ANFIS在训练和测试中均优于其余模型,这表明服用抗逆转录病毒药物的年数增加将为接受治疗的艾滋病毒/艾滋病患者带来更安全和更长的生命。对应分析的列联结果和卡方检验在捕捉和可视化正在服药的患者方面表现出色,作为回报给出了相似的结果,揭示了抗逆转录病毒药物与年龄组之间存在显著关联,而抗逆转录病毒药物与婚姻状况之间的关联(93.7%)相比其余变量解释了更高比例的变异。
Environ Sci Pollut Res Int. 2018-11-11
Bioresour Technol. 2023-2
Viruses. 2022-12-27