文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于人工智能的模型与尼日利亚贡贝州抗逆转录病毒治疗病例的对应分析可视化:一项比较研究

Artificial-Intelligence-Based Models Coupled with Correspondence Analysis Visualization on ART-Cases from Gombe State, Nigeria: A Comparative Study.

作者信息

Bala Kabiru, Etikan Ilker, Usman A G, Abba S I

机构信息

Biostatistics Department, Faculty of Medicine, Near East University, 99138 Nicosia, Cyprus.

Taraba State Polytechnic Suntai, Jalingo Campus, Howayi 660213, Taraba, Nigeria.

出版信息

Life (Basel). 2023 Mar 6;13(3):715. doi: 10.3390/life13030715.


DOI:10.3390/life13030715
PMID:36983868
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10057492/
Abstract

Antiretroviral therapy (ART) is the common hope for HIV/AIDS-treated patients. Total commitments from individuals and the entire community are the major challenges faced during treatment. This study investigated the progress of ART in the Federal Teaching Hospital in Gombe state, Nigeria by using various records of patients receiving treatment in the ART hospital unit. We combined artificial intelligence (AI)-based models and correspondence analysis (CA) techniques to predict and visualize the progress of ART from the beginning to the end. The AI models employed are artificial neural networks (ANNs), adaptive neuro-fuzzy inference systems (ANFISs) and support-vector machines (SVMs) and a classical linear regression model of multiple linear regression (MLR). According to the outcome of this study, ANFIS in both training and testing outperformed the remaining models given the R (0.903 and 0.904) and MSE (7.961 and 3.751) values, revealing that any increase in the number of years of taking ART medication will provide HIV/AIDS-treated patients with safer and elongated lives. The contingency results for the CA and the chi-square test did an excellent job of capturing and visualizing the patients on medication, which gave similar results in return, revealing there is a significant association between ART drugs and the age group, while the association between ART drugs and marital status (93.7%) explained a higher percentage of variation compared with the remaining variables.

摘要

抗逆转录病毒疗法(ART)是接受治疗的艾滋病毒/艾滋病患者的共同希望。个人和整个社区的全面投入是治疗过程中面临的主要挑战。本研究通过使用抗逆转录病毒治疗医院科室接受治疗患者的各种记录,调查了尼日利亚贡贝州联邦教学医院的抗逆转录病毒治疗进展情况。我们结合基于人工智能(AI)的模型和对应分析(CA)技术,来预测和可视化抗逆转录病毒治疗从开始到结束的进展。所采用的人工智能模型包括人工神经网络(ANNs)、自适应神经模糊推理系统(ANFISs)和支持向量机(SVMs)以及多元线性回归(MLR)的经典线性回归模型。根据本研究的结果,考虑到R值(分别为0.903和0.904)和均方误差(MSE,分别为7.961和3.751),ANFIS在训练和测试中均优于其余模型,这表明服用抗逆转录病毒药物的年数增加将为接受治疗的艾滋病毒/艾滋病患者带来更安全和更长的生命。对应分析的列联结果和卡方检验在捕捉和可视化正在服药的患者方面表现出色,作为回报给出了相似的结果,揭示了抗逆转录病毒药物与年龄组之间存在显著关联,而抗逆转录病毒药物与婚姻状况之间的关联(93.7%)相比其余变量解释了更高比例的变异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/570b97658ed5/life-13-00715-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/e39eba72bb05/life-13-00715-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/91f100be12b0/life-13-00715-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/248339249a29/life-13-00715-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/d4936bdb1849/life-13-00715-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/49064c84f250/life-13-00715-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/8c1c0221c1d6/life-13-00715-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/5167e50582b7/life-13-00715-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/35fb1abcf045/life-13-00715-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/e3020575cae1/life-13-00715-g009a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/af8279438f04/life-13-00715-g010a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/570b97658ed5/life-13-00715-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/e39eba72bb05/life-13-00715-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/91f100be12b0/life-13-00715-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/248339249a29/life-13-00715-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/d4936bdb1849/life-13-00715-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/49064c84f250/life-13-00715-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/8c1c0221c1d6/life-13-00715-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/5167e50582b7/life-13-00715-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/35fb1abcf045/life-13-00715-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/e3020575cae1/life-13-00715-g009a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/af8279438f04/life-13-00715-g010a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10057492/570b97658ed5/life-13-00715-g011.jpg

相似文献

[1]
Artificial-Intelligence-Based Models Coupled with Correspondence Analysis Visualization on ART-Cases from Gombe State, Nigeria: A Comparative Study.

Life (Basel). 2023-3-6

[2]
Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction.

Environ Sci Pollut Res Int. 2021-5

[3]
Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel.

Environ Monit Assess. 2020-6-17

[4]
Prediction of biochemical oxygen demand at the upstream catchment of a reservoir using adaptive neuro fuzzy inference system.

Water Sci Technol. 2017-10

[5]
Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models.

Environ Sci Pollut Res Int. 2018-11-11

[6]
Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP.

J Environ Manage. 2021-7-1

[7]
Artificial intelligence and machine learning approaches in composting process: A review.

Bioresour Technol. 2023-2

[8]
Artificial intelligence modeling to predict transmembrane pressure in anaerobic membrane bioreactor-sequencing batch reactor during biohydrogen production.

J Environ Manage. 2021-8-15

[9]
Predicting coagulation-flocculation process for turbidity removal from water using graphene oxide: a comparative study on ANN, SVR, ANFIS, and RSM models.

Environ Sci Pollut Res Int. 2022-10

[10]
Power optimization of a photovoltaic system with artificial intelligence algorithms over two seasons in tropical area.

MethodsX. 2022-12-10

引用本文的文献

[1]
Optimized SVR with nature-inspired algorithms for environmental modelling of mycotoxins in food virtual-water samples.

Sci Rep. 2025-5-13

[2]
Shaping Poultry Meat Quality Attributes in the Context of Consumer Expectations and Preferences-A Case Study of Poland.

Foods. 2023-7-13

本文引用的文献

[1]
"The effect of 48-weeks azithromycin therapy on levels of soluble biomarkers associated with HIV-associated chronic lung disease".

Int Immunopharmacol. 2023-3

[2]
Impact of Early SARS-CoV-2 Antiviral Therapy on Disease Progression.

Viruses. 2022-12-27

[3]
The vaginal microbiota of women living with HIV on suppressive antiretroviral therapy and its relation to high-risk human papillomavirus infection.

BMC Microbiol. 2023-1-19

[4]
Predictors of delayed Anti-Retroviral Therapy initiation among adults referred for HIV treatment in Uganda: a cross-sectional study.

BMC Health Serv Res. 2023-1-16

[5]
Association between serum amylase levels and CD4 cell counts in newly diagnosed people living with HIV: A case-control study.

Medicine (Baltimore). 2023-1-13

[6]
Factors Associated with Preferences for Long-Acting Injectable Antiretroviral Therapy Among Adolescents and Young People Living with HIV in South Africa.

AIDS Behav. 2023-7

[7]
Association of Race and Ethnicity With Initial Prescription of Antiretroviral Therapy Among People With HIV in the US.

JAMA. 2023-1-3

[8]
Machine learning outperformed logistic regression classification even with limit sample size: A model to predict pediatric HIV mortality and clinical progression to AIDS.

PLoS One. 2022

[9]
Identifying Potential Factors Associated with High HIV viral load in KwaZulu-Natal, South Africa using Multiple Correspondence Analysis and Random Forest Analysis.

BMC Med Res Methodol. 2022-6-17

[10]
Multidrug-resistant Staphylococcus aureus nasal carriage among HIV-positive outpatients in Guangzhou, China: Prevalence, risk factors, phenotypic and molecular characteristics.

J Infect Chemother. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索