Suppr超能文献

可解释的深度药物靶标表示用于结合亲和力预测。

Explainable deep drug-target representations for binding affinity prediction.

机构信息

Univ Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal.

BSIM Therapeutics, Instituto Pedro Nunes, Coimbra, Portugal.

出版信息

BMC Bioinformatics. 2022 Jun 17;23(1):237. doi: 10.1186/s12859-022-04767-y.

Abstract

BACKGROUND

Several computational advances have been achieved in the drug discovery field, promoting the identification of novel drug-target interactions and new leads. However, most of these methodologies have been overlooking the importance of providing explanations to the decision-making process of deep learning architectures. In this research study, we explore the reliability of convolutional neural networks (CNNs) at identifying relevant regions for binding, specifically binding sites and motifs, and the significance of the deep representations extracted by providing explanations to the model's decisions based on the identification of the input regions that contributed the most to the prediction. We make use of an end-to-end deep learning architecture to predict binding affinity, where CNNs are exploited in their capacity to automatically identify and extract discriminating deep representations from 1D sequential and structural data.

RESULTS

The results demonstrate the effectiveness of the deep representations extracted from CNNs in the prediction of drug-target interactions. CNNs were found to identify and extract features from regions relevant for the interaction, where the weight associated with these spots was in the range of those with the highest positive influence given by the CNNs in the prediction. The end-to-end deep learning model achieved the highest performance both in the prediction of the binding affinity and on the ability to correctly distinguish the interaction strength rank order when compared to baseline approaches.

CONCLUSIONS

This research study validates the potential applicability of an end-to-end deep learning architecture in the context of drug discovery beyond the confined space of proteins and ligands with determined 3D structure. Furthermore, it shows the reliability of the deep representations extracted from the CNNs by providing explainability to the decision-making process.

摘要

背景

在药物发现领域已经取得了多项计算进展,促进了新型药物-靶标相互作用和新先导化合物的鉴定。然而,这些方法大多忽略了为深度学习架构的决策过程提供解释的重要性。在这项研究中,我们探讨了卷积神经网络(CNN)识别结合相关区域(特别是结合位点和基序)的可靠性,以及根据识别对预测贡献最大的输入区域为模型决策提供解释提取深度表示的重要性。我们使用端到端深度学习架构来预测结合亲和力,其中 CNN 被用于自动识别和从 1D 序列和结构数据中提取有区别的深度表示。

结果

结果表明,从 CNN 中提取的深度表示在药物-靶标相互作用预测中的有效性。发现 CNN 可以识别和提取与相互作用相关的区域的特征,与这些点相关的权重与 CNN 在预测中给出的最高正影响的权重相当。与基线方法相比,端到端深度学习模型在预测结合亲和力和正确区分相互作用强度排序的能力方面表现出最高的性能。

结论

这项研究验证了端到端深度学习架构在药物发现中的潜在适用性,超越了具有确定 3D 结构的蛋白质和配体的有限空间。此外,它还展示了通过为决策过程提供解释从 CNN 中提取深度表示的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1377/9204982/6c532755deaa/12859_2022_4767_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验