Suppr超能文献

基于萝卡酰胺衍生物的分层虚拟筛选以发现新的潜在抗皮肤癌药物。

Hierarchical Virtual Screening Based on Rocaglamide Derivatives to Discover New Potential Anti-Skin Cancer Agents.

作者信息

Dos Santos Igor V F, Borges Rosivaldo S, Silva Guilherme M, de Lima Lúcio R, Bastos Ruan S, Ramos Ryan S, Silva Luciane B, da Silva Carlos H T P, Dos Santos Cleydson B R

机构信息

Modeling and Computational Chemistry Laboratory, Federal University of Amapá, Macapá, Brazil.

Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá, Brazil.

出版信息

Front Mol Biosci. 2022 Jun 2;9:836572. doi: 10.3389/fmolb.2022.836572. eCollection 2022.

Abstract

Skin Cancer (SC) is among the most common type of cancers worldwide. The search for SC therapeutics using molecular modeling strategies as well as considering natural plant-derived products seems to be a promising strategy. The phytochemical Rocaglamide A (Roc-A) and its derivatives rise as an interesting set of reference compounds due to their cytotoxic activity with SC cell lines. In view of this, we performed a hierarchical virtual screening study considering Roc-A and its derivatives, with the aim to find new chemical entities with potential activity against SC. For this, we selected 15 molecules (Roc-A and 14 derivatives) and initially used them in docking studies to predict their interactions with Checkpoint kinase 1 (Chk1) as a target for SC. This allowed us to compile and use them as a training set to build robust pharmacophore models, validated by Pearson's correlation () values and hierarchical cluster analysis (HCA), subsequentially submitted to prospective virtual screening using the Molport database. Outputted compounds were then selected considering their similarities to Roc-A, followed by analyses of predicted toxicity and pharmacokinetic properties as well as of consensus molecular docking using three software. 10 promising compounds were selected and analyzed in terms of their properties and structural features and, also, considering their previous reports in literature. In this way, the 10 promising virtual hits found in this work may represent potential anti-SC agents and further investigations concerning their biological tests shall be conducted.

摘要

皮肤癌(SC)是全球最常见的癌症类型之一。利用分子建模策略以及考虑天然植物衍生产品来寻找皮肤癌治疗方法似乎是一种很有前景的策略。植物化学物质洛卡酰胺A(Roc-A)及其衍生物因其对皮肤癌细胞系的细胞毒性活性而成为一组有趣的参考化合物。鉴于此,我们进行了一项分层虚拟筛选研究,考虑了Roc-A及其衍生物,旨在寻找对皮肤癌具有潜在活性的新化学实体。为此,我们选择了15种分子(Roc-A和14种衍生物),并首先将它们用于对接研究,以预测它们与作为皮肤癌靶点的检查点激酶1(Chk1)的相互作用。这使我们能够将它们汇编并用作训练集来构建强大的药效团模型,通过皮尔逊相关系数()值和层次聚类分析(HCA)进行验证,随后使用Molport数据库进行前瞻性虚拟筛选。然后根据输出化合物与Roc-A的相似性进行选择,接着分析预测的毒性和药代动力学性质以及使用三种软件进行的一致性分子对接。选择了10种有前景的化合物,并根据它们的性质和结构特征进行分析,同时也考虑了它们在文献中的先前报道。通过这种方式,在这项工作中发现的10种有前景的虚拟命中物可能代表潜在的抗皮肤癌药物,应进一步对其进行生物学测试研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0e7/9201829/008fe7b36bd3/fmolb-09-836572-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验