Suppr超能文献

机器学习会是房颤筛查的未来方向吗?

Is machine learning the future for atrial fibrillation screening?

作者信息

Sivanandarajah Pavidra, Wu Huiyi, Bajaj Nikesh, Khan Sadia, Ng Fu Siong

机构信息

National Heart and Lung Institute, Imperial College London, London, United Kingdom.

Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.

出版信息

Cardiovasc Digit Health J. 2022 May 16;3(3):136-145. doi: 10.1016/j.cvdhj.2022.04.001. eCollection 2022 Jun.

Abstract

Atrial fibrillation (AF) is the most common arrhythmia and causes significant morbidity and mortality. Early identification of AF may lead to early treatment of AF and may thus prevent AF-related strokes and complications. However, there is no current formal, cost-effective strategy for population screening for AF. In this review, we give a brief overview of targeted screening for AF, AF risk score models used for screening and describe the different screening tools. We then go on to extensively discuss the potential applications of machine learning in AF screening.

摘要

心房颤动(AF)是最常见的心律失常,会导致严重的发病率和死亡率。早期识别房颤可能会带来房颤的早期治疗,从而预防与房颤相关的中风和并发症。然而,目前尚无针对人群进行房颤筛查的正式且具有成本效益的策略。在本综述中,我们简要概述了房颤的靶向筛查、用于筛查的房颤风险评分模型,并描述了不同的筛查工具。接着,我们将广泛讨论机器学习在房颤筛查中的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/311d/9204790/5dfaf30ca345/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验