Electrophysiology Service, Department of Medicine, Montreal Heart Institute, Université de Montréal, 5000 rue Bélanger, Montreal, QC H1T 1C8, Canada.
Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, 5000 rue Bélanger, Montreal, QC H1T 1C8, Canada.
Europace. 2024 Aug 3;26(8). doi: 10.1093/europace/euae201.
Atrial fibrillation (AF) prediction and screening are of important clinical interest because of the potential to prevent serious adverse events. Devices capable of detecting short episodes of arrhythmia are now widely available. Although it has recently been suggested that some high-risk patients with AF detected on implantable devices may benefit from anticoagulation, long-term management remains challenging in lower-risk patients and in those with AF detected on monitors or wearable devices as the development of clinically meaningful arrhythmia burden in this group remains unknown. Identification and prediction of clinically relevant AF is therefore of unprecedented importance to the cardiologic community. Family history and underlying genetic markers are important risk factors for AF. Recent studies suggest a good predictive ability of polygenic risk scores, with a possible additive value to clinical AF prediction scores. Artificial intelligence, enabled by the exponentially increasing computing power and digital data sets, has gained traction in the past decade and is of increasing interest in AF prediction using a single or multiple lead sinus rhythm electrocardiogram. Integrating these novel approaches could help predict AF substrate severity, thereby potentially improving the effectiveness of AF screening and personalizing the management of patients presenting with conditions such as embolic stroke of undetermined source or subclinical AF. This review presents current evidence surrounding deep learning and polygenic risk scores in the prediction of incident AF and provides a futuristic outlook on possible ways of implementing these modalities into clinical practice, while considering current limitations and required areas of improvement.
心房颤动(AF)的预测和筛查具有重要的临床意义,因为这有可能预防严重的不良事件。现在已经有能够检测到短暂心律失常的设备广泛应用。尽管最近有人提出,一些在植入式设备上检测到的高风险 AF 患者可能受益于抗凝治疗,但在低风险患者以及在监测器或可穿戴设备上检测到的 AF 患者中,长期管理仍然具有挑战性,因为在这组患者中,临床意义上的心律失常负担的发展尚不清楚。因此,对心律失常有临床意义的识别和预测对心血管学界来说具有前所未有的重要性。家族史和潜在的遗传标记是 AF 的重要危险因素。最近的研究表明,多基因风险评分具有良好的预测能力,可能对临床 AF 预测评分具有附加价值。人工智能,借助指数级增长的计算能力和数字数据集,在过去十年中得到了发展,并在使用单个或多个窦性节律心电图预测 AF 方面引起了越来越多的关注。整合这些新方法可能有助于预测 AF 底物的严重程度,从而有可能提高 AF 筛查的有效性,并针对患有栓塞性卒中来源不明或亚临床 AF 等疾病的患者进行个性化治疗。本文回顾了深度学习和多基因风险评分在预测新发 AF 中的现有证据,并对将这些方法应用于临床实践的可能途径进行了前瞻性展望,同时考虑了当前的局限性和需要改进的领域。