Suppr超能文献

自旋霍尔纳米振荡器的电压驱动千兆赫兹频率调谐

Voltage-driven gigahertz frequency tuning of spin Hall nano-oscillators.

作者信息

Choi Jong-Guk, Park Jaehyeon, Kang Min-Gu, Kim Doyoon, Rieh Jae-Sung, Lee Kyung-Jin, Kim Kab-Jin, Park Byong-Guk

机构信息

Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Korea.

Department of Physics, KAIST, Daejeon, 34141, Korea.

出版信息

Nat Commun. 2022 Jun 30;13(1):3783. doi: 10.1038/s41467-022-31493-z.

Abstract

Spin Hall nano-oscillators (SHNOs) exploiting current-driven magnetization auto-oscillation have recently received much attention because of their potential for neuromorphic computing. Widespread applications of neuromorphic devices with SHNOs require an energy-efficient method of tuning oscillation frequency over broad ranges and storing trained frequencies in SHNOs without the need for additional memory circuitry. While the voltage-driven frequency tuning of SHNOs has been demonstrated, it was volatile and limited to megahertz ranges. Here, we show that the frequency of SHNOs is controlled up to 2.1 GHz by an electric field of 1.25 MV/cm. The large frequency tuning is attributed to the voltage-controlled magnetic anisotropy (VCMA) in a perpendicularly magnetized Ta/Pt/[Co/Ni]/Co/AlO structure. Moreover, the non-volatile VCMA effect enables cumulative control of the frequency using repetitive voltage pulses which mimic the potentiation and depression functions of biological synapses. Our results suggest that the voltage-driven frequency tuning of SHNOs facilitates the development of energy-efficient neuromorphic devices.

摘要

利用电流驱动磁化自振荡的自旋霍尔纳米振荡器(SHNOs)因其在神经形态计算方面的潜力,近来备受关注。具有SHNOs的神经形态器件的广泛应用需要一种节能方法,以便在很宽的范围内调节振荡频率,并将训练频率存储在SHNOs中,而无需额外的存储电路。虽然已经证明了SHNOs的电压驱动频率调谐,但它是易失性的,并且仅限于兆赫兹范围。在此,我们表明,通过1.25 MV/cm的电场可将SHNOs的频率控制高达2.1 GHz。这种大的频率调谐归因于垂直磁化的Ta/Pt/[Co/Ni]/Co/AlO结构中的电压控制磁各向异性(VCMA)。此外,非易失性VCMA效应能够使用模仿生物突触增强和抑制功能的重复电压脉冲对频率进行累积控制。我们的结果表明,SHNOs的电压驱动频率调谐有助于节能神经形态器件的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f551/9246901/adc9a10f57d0/41467_2022_31493_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验