Suppr超能文献

用于环烯烃共聚物微流控芯片大规模生产的永久疏水表面处理与溶剂蒸汽辅助热键合相结合

Permanent Hydrophobic Surface Treatment Combined with Solvent Vapor-Assisted Thermal Bonding for Mass Production of Cyclic Olefin Copolymer Microfluidic Chips.

作者信息

Guan Tianyu, Yuket Sineenat, Cong Hengji, Carton Douglas William, Zhang Nan

机构信息

Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin 4 Dublin, Ireland.

MiNAN Technologies, NovaUCD, Belfield, Dublin 4 Dublin, Ireland.

出版信息

ACS Omega. 2022 May 31;7(23):20104-20117. doi: 10.1021/acsomega.2c01948. eCollection 2022 Jun 14.

Abstract

A hydrophobic surface modification followed by solvent vapor-assisted thermal bonding was developed for the fabrication of cyclic olefin copolymer (COC) microfluidic chips. The modifier species 1,1,2,2-perfluorooctyl trichlorosilane (FOTS) was used to achieve the entrapment functionalization on the COC surface, and a hydrophobic surface was developed through the formation of a Si-O-Si crosslink network. The COC surface coated with 40 vol % cyclohexane, 59 vol % acetone, and 1 vol % FOTS by ultrasonic spray 10 and 20 times maintained its hydrophobicity with the water contact angle increasing from ∼86 to ∼115° after storage for 3 weeks. The solvent vapor-assisted thermal bonding was optimized to achieve high bond strength and good channel integrity. The results revealed that the COC chips exposed to 60 vol % cyclohexane and 40 vol % acetone for 120 s have the highest bond strength, with a burst pressure of ∼17 bar, which is sufficient for microfluidics applications such as droplet generation. After bonding, the channel maintained its integrity without any channel collapse. The hydrophobicity was also maintained, proved by the water contact angle of ∼115° on the bonded film, as well as the curved shape of water flow in the chip channel by capillary test. The combined hydrophobic treatment and solvent bonding process show significant benefits for scale-up production compared to conventional hydrophilic treatment for bonding and hydrophobic treatment using surface grafting or chemical vapor deposition since it does not require nasty chemistry, long-term treatment, vacuum chamber, and can be integrated into production line easily. Such a process can also be extended to permanent hydrophilic treatment combined with the bonding process and will lay a foundation for low-cost mass production of plastic microfluidic cartridges.

摘要

为制备环烯烃共聚物(COC)微流控芯片,开发了一种疏水表面改性方法,随后采用溶剂蒸汽辅助热键合工艺。使用改性剂1,1,2,2-全氟辛基三氯硅烷(FOTS)在COC表面实现捕获功能化,并通过形成Si-O-Si交联网络形成疏水表面。通过超声喷涂10次和20次,用40体积%环己烷、59体积%丙酮和1体积%FOTS涂覆的COC表面在储存3周后保持其疏水性,水接触角从约86°增加到约115°。对溶剂蒸汽辅助热键合进行了优化,以实现高键合强度和良好的通道完整性。结果表明,暴露于60体积%环己烷和40体积%丙酮中120 s的COC芯片具有最高的键合强度,破裂压力约为17 bar,这足以满足诸如液滴生成等微流控应用。键合后,通道保持其完整性,没有任何通道塌陷。疏水性也得以保持,键合膜上约115°的水接触角以及通过毛细管测试显示的芯片通道中水流的弯曲形状证明了这一点。与传统的用于键合的亲水处理以及使用表面接枝或化学气相沉积的疏水处理相比,疏水处理和溶剂键合相结合的工艺在扩大生产规模方面具有显著优势,因为它不需要有害化学物质、长期处理、真空室,并且可以轻松集成到生产线中。这样的工艺还可以扩展到与键合工艺相结合的永久性亲水处理,为塑料微流控芯片的低成本大规模生产奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac35/9202056/26fac62f9c60/ao2c01948_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验