Suppr超能文献

用于光声信号解混的两步近端梯度下降算法。

Two-step proximal gradient descent algorithm for photoacoustic signal unmixing.

作者信息

Qu Zheng, Liu Chao, Zhu Jingyi, Zhang Yachao, Zhou Yingying, Wang Lidai

机构信息

City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China.

City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Shenzhen, Guang Dong 518057, China.

出版信息

Photoacoustics. 2022 Jun 9;27:100379. doi: 10.1016/j.pacs.2022.100379. eCollection 2022 Sep.

Abstract

Photoacoustic microscopy uses multiple wavelengths to measure concentrations of different absorbers. The speed of sound limits the shortest wavelength switching time to sub-microseconds, which is a bottleneck for high-speed broad-spectrum imaging. Via computational separation of overlapped signals, we can break the sound-speed limit on the wavelength switching time. This paper presents a new signal unmixing algorithm named two-step proximal gradient descent. It is advantageous in separating multiple wavelengths with long overlapping and high noise. In the simulation, we can unmix up to nine overlapped signals and successfully separate three overlapped signals with 12-ns delay and 15.9-dB signal-to-noise ratio. We apply this technique to separate three-wavelength photoacoustic images in microvessels. In vivo results show that the algorithm can successfully unmix overlapped multi-wavelength photoacoustic signals, and the unmixed data can improve accuracy in oxygen saturation imaging.

摘要

光声显微镜使用多个波长来测量不同吸收体的浓度。声速将最短波长切换时间限制在亚微秒级,这是高速广谱成像的一个瓶颈。通过对重叠信号进行计算分离,我们可以突破波长切换时间上的声速限制。本文提出了一种名为两步近端梯度下降的新信号解混算法。它在分离具有长重叠和高噪声的多个波长方面具有优势。在模拟中,我们可以解混多达九个重叠信号,并成功分离出延迟为12纳秒、信噪比为15.9分贝的三个重叠信号。我们将此技术应用于分离微血管中的三波长光声图像。体内结果表明,该算法能够成功地解混重叠的多波长光声信号,且解混后的数据可以提高氧饱和度成像的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccb3/9198964/897a72f46e61/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验