Suppr超能文献

前列腺癌光谱光声成像中的系统级优化

System-level optimization in spectroscopic photoacoustic imaging of prostate cancer.

作者信息

Wu Yixuan, Kang Jeeun, Lesniak Wojciech G, Lisok Ala, Zhang Haichong K, Taylor Russell H, Pomper Martin G, Boctor Emad M

机构信息

The Johns Hopkins University, Baltimore, MD 21217, USA.

Worcester Polytechnic Institute, Worcester, MA 01609, USA.

出版信息

Photoacoustics. 2022 Jun 10;27:100378. doi: 10.1016/j.pacs.2022.100378. eCollection 2022 Sep.

Abstract

This study presents a system-level optimization of spectroscopic photoacoustic (PA) imaging for prostate cancer (PCa) detection in three folds. First, we present a spectral unmixing model to segregate spectral system error (SSE). We constructed two noise models (NMs) for the laser spectrotemporal fluctuation and the ultrasound system noise. We used these NMs in linear spectral unmixing to denoise and to achieve high temporal resolution. Second, we employed a simulation-aided wavelength optimization to select the most effective subset of wavelengths. NMs again were considered so that selected wavelengths were not only robust to the collinearity of optical absorbance, but also to noise. Third, we quantified the effect of frame averaging on improving spectral unmixing accuracy through theoretical analysis and numerical validation. To validate the whole framework, we performed comprehensive studies in simulation and an in vivo experiment which evaluated prostate-specific membrane antigen (PSMA) expression in PCa on a mice model. Both simulation analysis and in vivo studies confirmed that the proposed framework significantly enhances image signal-to-noise ratio (SNR) and spectral unmixing accuracy. It enabled more sensitive and faster PCa detection. Moreover, the proposed framework can be generalized to other spectroscopic PA imaging studies for noise reduction, wavelength optimization, and higher temporal resolution.

摘要

本研究从三个方面对用于前列腺癌(PCa)检测的光谱光声(PA)成像进行了系统级优化。首先,我们提出了一种光谱解混模型来分离光谱系统误差(SSE)。我们构建了两个噪声模型(NMs),分别用于激光光谱时间波动和超声系统噪声。我们将这些噪声模型用于线性光谱解混以进行去噪并实现高时间分辨率。其次,我们采用了模拟辅助的波长优化来选择最有效的波长子集。再次考虑了噪声模型,以使所选波长不仅对光吸收的共线性具有鲁棒性,而且对噪声也具有鲁棒性。第三,我们通过理论分析和数值验证量化了帧平均对提高光谱解混精度的影响。为了验证整个框架,我们在模拟和体内实验中进行了全面研究,该体内实验在小鼠模型上评估了PCa中前列腺特异性膜抗原(PSMA)的表达。模拟分析和体内研究均证实,所提出的框架显著提高了图像信噪比(SNR)和光谱解混精度。它能够实现更灵敏、更快的PCa检测。此外,所提出的框架可以推广到其他光谱PA成像研究中,以进行降噪、波长优化和提高时间分辨率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4715/9441267/c26fde02332a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验