Suppr超能文献

结直肠手术后深部手术部位感染的半自动监测:两种监测算法的多中心外部验证。

Semiautomated surveillance of deep surgical site infections after colorectal surgeries: A multicenter external validation of two surveillance algorithms.

机构信息

Department of Medical Microbiology and Infection Prevention, University Medical Centre Utrecht, Utrecht, The Netherlands.

Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands.

出版信息

Infect Control Hosp Epidemiol. 2023 Apr;44(4):616-623. doi: 10.1017/ice.2022.147. Epub 2022 Jun 21.

Abstract

OBJECTIVE

Automated surveillance methods increasingly replace or support conventional (manual) surveillance; the latter is labor intensive and vulnerable to subjective interpretation. We sought to validate 2 previously developed semiautomated surveillance algorithms to identify deep surgical site infections (SSIs) in patients undergoing colorectal surgeries in Dutch hospitals.

DESIGN

Multicenter retrospective cohort study.

METHODS

From 4 hospitals, we selected colorectal surgery patients between 2018 and 2019 based on procedure codes, and we extracted routine care data from electronic health records. Per hospital, a classification model and a regression model were applied independently to classify patients into low- or high probability of having developed deep SSI. High-probability patients need manual SSI confirmation; low-probability records are classified as no deep SSI. Sensitivity, positive predictive value (PPV), and workload reduction were calculated compared to conventional surveillance.

RESULTS

In total, 672 colorectal surgery patients were included, of whom 28 (4.1%) developed deep SSI. Both surveillance models achieved good performance. After adaptation to clinical practice, the classification model had 100% sensitivity and PPV ranged from 11.1% to 45.8% between hospitals. The regression model had 100% sensitivity and 9.0%-14.9% PPV. With both models, <25% of records needed review to confirm SSI. The regression model requires more complex data management skills, partly due to incomplete data.

CONCLUSIONS

In this independent external validation, both surveillance models performed well. The classification model is preferred above the regression model because of source-data availability and less complex data-management requirements. The next step is implementation in infection prevention practices and workflow processes.

摘要

目的

自动化监测方法越来越多地替代或支持传统(手动)监测;后者劳动强度大,且容易受到主观解释的影响。我们旨在验证 2 种先前开发的半自动化监测算法,以识别荷兰医院接受结直肠手术的患者的深部手术部位感染(SSI)。

设计

多中心回顾性队列研究。

方法

我们根据手术代码,从 4 家医院中选择了 2018 年至 2019 年的结直肠手术患者,并从电子健康记录中提取常规护理数据。每家医院均应用分类模型和回归模型对患者进行分类,以确定发生深部 SSI 的可能性低或高。高概率患者需要进行手动 SSI 确认;低概率记录则被归类为无深部 SSI。与传统监测相比,计算了灵敏度、阳性预测值(PPV)和工作量减少。

结果

共纳入 672 例结直肠手术患者,其中 28 例(4.1%)发生深部 SSI。两种监测模型均具有良好的性能。在适应临床实践后,分类模型的灵敏度为 100%,PPV 在医院之间的范围为 11.1%至 45.8%。回归模型的灵敏度为 100%,PPV 为 9.0%-14.9%。两种模型下,<25%的记录需要审查以确认 SSI。回归模型需要更复杂的数据管理技能,部分原因是数据不完整。

结论

在这项独立的外部验证中,两种监测模型均表现良好。由于源数据可用性和更简单的数据管理要求,分类模型优于回归模型。下一步是将其应用于感染预防实践和工作流程中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验