Suppr超能文献

深度相干学习:一种用于医学超声高质量单平面波成像的无监督深度波束形成器。

Deep coherence learning: An unsupervised deep beamformer for high quality single plane wave imaging in medical ultrasound.

机构信息

Department of Electronic Engineering, Sogang University, Seoul 04107, South Korea.

Department of Biomedical Software Engineering, The Catholic University of Korea, Bucheon 14662, South Korea.

出版信息

Ultrasonics. 2024 Sep;143:107408. doi: 10.1016/j.ultras.2024.107408. Epub 2024 Jul 19.

Abstract

Plane wave imaging (PWI) in medical ultrasound is becoming an important reconstruction method with high frame rates and new clinical applications. Recently, single PWI based on deep learning (DL) has been studied to overcome lowered frame rates of traditional PWI with multiple PW transmissions. However, due to the lack of appropriate ground truth images, DL-based PWI still remains challenging for performance improvements. To address this issue, in this paper, we propose a new unsupervised learning approach, i.e., deep coherence learning (DCL)-based DL beamformer (DL-DCL), for high-quality single PWI. In DL-DCL, the DL network is trained to predict highly correlated signals with a unique loss function from a set of PW data, and the trained DL model encourages high-quality PWI from low-quality single PW data. In addition, the DL-DCL framework based on complex baseband signals enables a universal beamformer. To assess the performance of DL-DCL, simulation, phantom and in vivo studies were conducted with public datasets, and it was compared with traditional beamformers (i.e., DAS with 75-PWs and DMAS with 1-PW) and other DL-based methods (i.e., supervised learning approach with 1-PW and generative adversarial network (GAN) with 1-PW). From the experiments, the proposed DL-DCL showed comparable results with DMAS with 1-PW and DAS with 75-PWs in spatial resolution, and it outperformed all comparison methods in contrast resolution. These results demonstrated that the proposed unsupervised learning approach can address the inherent limitations of traditional PWIs based on DL, and it also showed great potential in clinical settings with minimal artifacts.

摘要

平面波成像(PWI)在医学超声中正成为一种具有高帧率和新临床应用的重要重建方法。最近,基于深度学习(DL)的单 PWI 已被研究用于克服传统多 PW 传输 PWI 的帧率降低问题。然而,由于缺乏适当的真实图像,基于 DL 的 PWI 仍然在性能提升方面具有挑战性。为了解决这个问题,在本文中,我们提出了一种新的无监督学习方法,即基于深度相干学习(DCL)的 DL 波束形成器(DL-DCL),用于高质量的单 PWI。在 DL-DCL 中,DL 网络通过从一组 PW 数据中使用独特的损失函数预测具有独特相关性的信号进行训练,并且训练后的 DL 模型鼓励从低质量单 PW 数据中生成高质量的 PWI。此外,基于复数基带信号的 DL-DCL 框架支持通用波束形成器。为了评估 DL-DCL 的性能,使用公共数据集进行了模拟、体模和体内研究,并与传统波束形成器(即,具有 75-PW 的 DAS 和具有 1-PW 的 DMAS)和其他基于 DL 的方法(即,具有 1-PW 的监督学习方法和具有 1-PW 的生成对抗网络(GAN))进行了比较。从实验结果来看,所提出的 DL-DCL 在空间分辨率方面与具有 1-PW 的 DMAS 和具有 75-PW 的 DAS 具有可比的结果,并且在对比分辨率方面优于所有比较方法。这些结果表明,所提出的无监督学习方法可以解决基于 DL 的传统 PWI 的固有局限性,并且在具有最小伪影的临床环境中也具有很大的潜力。

相似文献

8
Image Quality Enhancement Using a Deep Neural Network for Plane Wave Medical Ultrasound Imaging.使用深度神经网络增强平面波医学超声成像的图像质量
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Apr;68(4):926-934. doi: 10.1109/TUFFC.2020.3023154. Epub 2021 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验