Department of Molecular and Cellular Biology and Institute of Genetics and Genomics of Geneva (iGE3), 30 quai Ernest-Ansermet, CH 1211, Geneva, Switzerland.
Molecular, Cellular and Developmental Biology (MCD), Center for Integrative Biology (CBI), University of Toulouse CNRS/UPS, Bâtiment IBCG, 118, route de Narbonne, 31062 Toulouse cedex 9, France.
Curr Biol. 2022 Jun 20;32(12):R611-R617. doi: 10.1016/j.cub.2022.04.083.
Cell growth relies upon the ability to produce new proteins, which requires energy and chemical precursors, and an adequate supply of the molecular machines for protein synthesis - ribosomes. Although not widely appreciated, ribosomes are remarkably abundant in all cells. For example, in a rapidly growing yeast cell there are ∼2-4 x 10 ribosomes, produced and exported to the cytoplasm at a rate of ∼2,000-4,000 per minute, with ribosomal proteins making up ∼50% of total cellular protein number and ∼30% of cellular protein mass. Even in a typical human cell ribosomal proteins constitute ∼4-6% of total protein mass, and ribosomes are present at ∼10 per cell. We begin this primer by exploring the tight relationship between ribosome production and cell growth, which has important implications not just for the cell's global protein expression profile and maximum growth rate, but also for the molecular composition of the ribosome itself. We then discuss how and to what extent the expression of the RNA and protein components of ribosomes is fine-tuned to match the cell's needs and minimise waste. Finally, we highlight the importance of coordinated ribosomal RNA (rRNA) and ribosomal protein expression in eukaryotes and explore how defects in this process are associated with proteotoxicity and disease. A central underlying question addressed throughout is whether regulation of ribosome biogenesis has evolved to optimise energy efficiency or is instead (or in addition) driven by other goals, such as maximising cell growth rate, promoting adaptation to changing environmental conditions, or maintaining the stability of the cellular proteome.
细胞的生长依赖于产生新蛋白质的能力,这需要能量和化学前体,以及足够的蛋白质合成分子机器——核糖体。尽管核糖体在所有细胞中都非常丰富,但这一点并不广为人知。例如,在一个快速生长的酵母细胞中,有大约 2-4×10 的核糖体,以每分钟 2000-4000 个的速度产生并输出到细胞质中,核糖体蛋白占总细胞蛋白数的约 50%,占细胞蛋白质量的约 30%。即使在典型的人类细胞中,核糖体蛋白也占总蛋白质量的约 4-6%,每个细胞中存在约 10 个核糖体。我们从探讨核糖体的产生与细胞生长之间的紧密关系开始,这不仅对细胞的全局蛋白质表达谱和最大生长速率具有重要意义,而且对核糖体本身的分子组成也具有重要意义。然后,我们将讨论核糖体 RNA(rRNA)和核糖体蛋白成分的表达是如何以及在多大程度上被精细调控以匹配细胞的需求并最小化浪费的。最后,我们强调了真核生物中协调的核糖体 RNA(rRNA)和核糖体蛋白表达的重要性,并探讨了该过程中的缺陷如何与蛋白毒性和疾病相关。贯穿始终的一个核心问题是,核糖体生物发生的调节是为了优化能量效率而进化的,还是(或者除此之外)是由其他目标驱动的,例如最大化细胞生长速率、促进对环境变化的适应,或维持细胞蛋白质组的稳定性。