Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies, UMR 7021, Strasbourg F-67000, France.
Université Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
Langmuir. 2022 Jul 5;38(26):7945-7955. doi: 10.1021/acs.langmuir.2c00534. Epub 2022 Jun 22.
Nanoprecipitation is a facile and efficient approach to the assembly of loaded polymer nanoparticles (NPs) for applications in bioimaging and targeted drug delivery. Their successful use in clinics requires reproducible and scalable synthesis, for which microfluidics appears as an attractive technique. However, in the case of nanoprecipitation, particle formation depends strongly on mixing. Here, we compare 5 different types of microfluidic mixers with respect to the formation and properties of poly(d-l-lactide--glycolide) (PLGA) and poly(methyl methacrylate) NPs loaded with a fluorescent dye salt: a cross-shaped mixer, a multilamination mixer, a split and recombine mixer, two herringbone mixers, and two impact jet mixers. Size and fluorescence properties of the NPs obtained with these mixers are evaluated. All mixers, except the cross-shaped one, yield NPs at least as small and fluorescent as those obtained manually. Notably in the case of impact jet mixers operated at high flow speeds, the size of the NPs could be strongly reduced from >50 nm down to <20 nm. Surprisingly, the fluorescence quantum yield of NPs obtained with these mixers also depends strongly on the flow speed, increasing, in the case of PLGA, from 30 to >70%. These results show the importance of precisely controlling the assembly conditions for loaded polymer NPs. The present work further provides guidance for choosing the optimal microfluidic setup for production of nanomaterials for biomedical applications.
纳米沉淀法是一种简便有效的方法,可用于组装负载聚合物的纳米颗粒(NPs),从而应用于生物成像和靶向药物输送。为了在临床上成功应用,需要可重复且可扩展的合成方法,为此微流控技术似乎是一种有吸引力的技术。然而,在纳米沉淀的情况下,颗粒的形成强烈依赖于混合。在这里,我们比较了 5 种不同类型的微流混合器,研究了它们在形成和负载荧光染料盐的聚(D-丙交酯-共-乙交酯)(PLGA)和聚甲基丙烯酸甲酯(PMMA)纳米颗粒方面的性能:十字混合器、多层混合器、分裂再结合混合器、双人字混合器和双冲击射流混合器。评估了这些混合器获得的 NPs 的尺寸和荧光性质。除了十字混合器之外,所有混合器都能生成至少与手动生成的一样小且荧光的 NPs。值得注意的是,在以高流速运行的冲击射流混合器的情况下,NPs 的尺寸可以从大于 50nm 强烈减小至小于 20nm。令人惊讶的是,这些混合器获得的 NPs 的荧光量子产率也强烈依赖于流速,在 PLGA 的情况下,从 30%增加到大于 70%。这些结果表明,精确控制负载聚合物 NPs 的组装条件非常重要。本工作进一步为选择用于生物医学应用的纳米材料生产的最佳微流控装置提供了指导。
J Colloid Interface Sci. 2022-2
ACS Appl Mater Interfaces. 2017-11-29
Pharmaceutics. 2025-5-16
Micromachines (Basel). 2023-9-7