Qu Xin, Xu Peng, Jiang Hong, He Lixin, Ren Xinguo
Rocket Force University of Engineering, Xi'an, 710025, Shaanxi, China.
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
J Chem Phys. 2022 Jun 21;156(23):234104. doi: 10.1063/5.0090122.
We present a formulation and implementation of the density functional theory (DFT)+U method within the framework of linear combination of numerical atomic orbitals (NAO). Our implementation not only enables single-point total energy and electronic-structure calculations but also provides access to atomic forces and cell stresses, hence allowing for full structure relaxations of periodic systems. Furthermore, our implementation allows one to deal with non-collinear spin texture, with the spin-orbit coupling (SOC) effect treated self-consistently. The key aspect behind our implementation is a suitable definition of the correlated subspace when multiple atomic orbitals with the same angular momentum are used, and this is addressed via the "Mulliken charge projector" constructed in terms of the first (most localized) atomic orbital within the d/f angular momentum channel. The important Hubbard U and Hund J parameters can be estimated from a screened Coulomb potential of the Yukawa type, with the screening parameter either chosen semi-empirically or determined from the Thomas-Fermi screening model. Benchmark calculations are performed for four late transition metal monoxide bulk systems, i.e., MnO, FeO, CoO, and NiO, and for the 5d-electron compounds IrO. For the former type of systems, we check the performance of our DFT+U implementation for calculating bandgaps, magnetic moments, electronic band structures, as well as forces and stresses; for the latter, the efficacy of our DFT+U+SOC implementation is assessed. Systematic comparisons with available experimental results, especially with the results from other implementation schemes, are carried out, which demonstrate the validity of our NAO-based DFT+U formalism and implementation.
我们展示了在数值原子轨道(NAO)线性组合框架内密度泛函理论(DFT)+U 方法的一种公式化表述与实现。我们的实现不仅能够进行单点总能和电子结构计算,还能获取原子力和晶胞应力,从而允许对周期性系统进行完整的结构弛豫。此外,我们的实现允许处理非共线自旋纹理,自旋轨道耦合(SOC)效应自洽处理。我们实现背后的关键方面是当使用具有相同角动量的多个原子轨道时对相关子空间的合适定义,这通过在 d/f 角动量通道内根据第一个(最局域化)原子轨道构建的“穆利肯电荷投影算符”来解决。重要的哈伯德 U 和洪德 J 参数可以从汤川型屏蔽库仑势估计,屏蔽参数可以半经验地选择或根据托马斯 - 费米屏蔽模型确定。对四个晚期过渡金属单氧化物体相系统,即 MnO、FeO、CoO 和 NiO,以及对 5d 电子化合物 IrO 进行了基准计算。对于前一种类型的系统,我们检查我们的 DFT + U 实现用于计算带隙、磁矩、电子能带结构以及力和应力的性能;对于后一种情况,评估我们的 DFT + U + SOC 实现的功效。与现有实验结果,特别是与其他实现方案的结果进行了系统比较,这证明了我们基于 NAO 的 DFT + U 形式体系和实现的有效性。