Suppr超能文献

通过介质阻挡放电使溶液产生纳米级雾。

Potential generation of nano-sized mist by passing a solution through dielectric barrier discharge.

机构信息

Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.

Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.

出版信息

Sci Rep. 2022 Jun 22;12(1):10526. doi: 10.1038/s41598-022-14670-4.

Abstract

Plasma medicine, a therapeutic technology that uses atmospheric-pressure plasma, is attracting much attention as an innovative tool for the medical field. Most of the plasma biomedical tools use direct effects, such as heat, optical stimulation, and reactive chemical species, on the lesion. Nanoparticulation techniques using indirect action by plasma, i.e., generation of electric fields, have the potential to be applied to promote transdermal absorption, where drugs pass through the barrier function of skin and penetrate into internal tissues. Here, we show a method to directly generate the nano-sized mist by passing a solution through the dielectric barrier discharge. This method enables us to produce the mist potentially in the nanometer size range for both water-based and oil-based solutions. Ease of mist generation was influenced by the plasma-induced changes in physical and chemical characteristics, including electrical conductivity, viscosity, and chemical species. We anticipate the developed method for nano-sized mist generation to provide a technique in the applications of the transdermal absorption system, including those related to pharmaceuticals and cosmetics.

摘要

等离子体医学是一种利用大气压等离子体的治疗技术,作为医学领域的创新工具,正受到越来越多的关注。大多数等离子体生物医学工具利用热、光刺激和反应性化学物质等直接作用于病变部位。利用等离子体的间接作用(即产生电场)的纳米颗粒化技术有可能应用于促进经皮吸收,药物通过皮肤的屏障功能并渗透到内部组织中。在这里,我们展示了一种通过介电阻挡放电使溶液通过的方法来直接产生纳米级雾的方法。该方法可使我们能够为水基和油基溶液产生潜在的纳米级大小的雾。雾的产生容易受到等离子体诱导的物理和化学特性变化的影响,包括电导率、粘度和化学物质。我们预计开发的纳米级雾生成方法将为经皮吸收系统的应用提供一种技术,包括与药物和化妆品相关的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee3d/9217796/57846d73c4f5/41598_2022_14670_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验