Iraji Armin, Faghiri Ashkan, Fu Zening, Rachakonda Srinivas, Kochunov Peter, Belger Aysenil, Ford Judy M, McEwen Sarah, Mathalon Daniel H, Mueller Bryon A, Pearlson Godfrey D, Potkin Steven G, Preda Adrian, Turner Jessica A, van Erp Theodorus G M, Calhoun Vince D
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA.
Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.
Netw Neurosci. 2022 Jun 1;6(2):357-381. doi: 10.1162/netn_a_00196. eCollection 2022 Jun.
We introduce an extension of independent component analysis (ICA), called multiscale ICA, and design an approach to capture dynamic functional source interactions within and between multiple spatial scales. Multiscale ICA estimates functional sources at multiple spatial scales without imposing direct constraints on the size of functional sources, overcomes the limitation of using fixed anatomical locations, and eliminates the need for model-order selection in ICA analysis. We leveraged this approach to study sex-specific and sex-common connectivity patterns in schizophrenia. Results show dynamic reconfiguration and interaction within and between multi-spatial scales. Sex-specific differences occur (a) within the subcortical domain, (b) between the somatomotor and cerebellum domains, and (c) between the temporal domain and several others, including the subcortical, visual, and default mode domains. Most of the sex-specific differences belong to between-spatial-scale functional interactions and are associated with a dynamic state with strong functional interactions between the visual, somatomotor, and temporal domains and their anticorrelation patterns with the rest of the brain. We observed significant correlations between multi-spatial-scale functional interactions and symptom scores, highlighting the importance of multiscale analyses to identify potential biomarkers for schizophrenia. As such, we recommend such analyses as an important option for future functional connectivity studies.
我们引入了一种独立成分分析(ICA)的扩展方法,称为多尺度ICA,并设计了一种方法来捕捉多个空间尺度内以及之间的动态功能源交互。多尺度ICA在多个空间尺度上估计功能源,而不对功能源的大小施加直接约束,克服了使用固定解剖位置的局限性,并消除了ICA分析中模型阶数选择的必要性。我们利用这种方法来研究精神分裂症中性别特异性和性别共性的连接模式。结果显示了多空间尺度内以及之间的动态重构和交互。性别特异性差异出现在:(a)皮质下区域内;(b)躯体运动和小脑区域之间;(c)颞叶区域与其他几个区域之间,包括皮质下、视觉和默认模式区域。大多数性别特异性差异属于空间尺度间的功能交互,并且与一种动态状态相关,该动态状态表现为视觉、躯体运动和颞叶区域之间具有强烈的功能交互以及它们与大脑其他部分的反相关模式。我们观察到多空间尺度功能交互与症状评分之间存在显著相关性,突出了多尺度分析对于识别精神分裂症潜在生物标志物的重要性。因此,我们推荐此类分析作为未来功能连接性研究的一个重要选项。