Suppr超能文献

从非线性功能磁共振成像连接性中提取的网络表现出独特的空间变化,并且对精神分裂症患者与对照组个体之间的差异具有更高的敏感性。

Networks extracted from nonlinear fMRI connectivity exhibit unique spatial variation and enhanced sensitivity to differences between individuals with schizophrenia and controls.

作者信息

Kinsey Spencer, Kazimierczak Katarzyna, Camazón Pablo Andrés, Chen Jiayu, Adali Tülay, Kochunov Peter, Adhikari Bhim, Ford Judith, van Erp Theo G M, Dhamala Mukesh, Calhoun Vince D, Iraji Armin

机构信息

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA.

Neuroscience Institute, Georgia State University, Atlanta, GA, USA.

出版信息

bioRxiv. 2023 Nov 17:2023.11.16.566292. doi: 10.1101/2023.11.16.566292.

Abstract

Functional magnetic resonance imaging (fMRI) studies often estimate brain intrinsic connectivity networks (ICNs) from temporal relationships between hemodynamic signals using approaches such as independent component analysis (ICA). While ICNs are thought to represent functional sources that play important roles in various psychological phenomena, current approaches have been tailored to identify ICNs that mainly reflect linear statistical relationships. However, the elements comprising neural systems often exhibit remarkably complex nonlinear interactions that may be involved in cognitive operations and altered in psychiatric conditions such as schizophrenia. Consequently, there is a need to develop methods capable of effectively capturing ICNs from measures that are sensitive to nonlinear relationships. Here, we advance a novel approach to estimate ICNs from explicitly nonlinear whole-brain functional connectivity (ENL-wFC) by transforming resting-state fMRI (rsfMRI) data into the connectivity domain, allowing us to capture unique information from distance correlation patterns that would be missed by linear whole-brain functional connectivity (LIN-wFC) analysis. Our findings provide evidence that ICNs commonly extracted from linear (LIN) relationships are also reflected in explicitly nonlinear (ENL) connectivity patterns. ENL ICN estimates exhibit higher reliability and stability, highlighting our approach's ability to effectively quantify ICNs from rsfMRI data. Additionally, we observed a consistent spatial gradient pattern between LIN and ENL ICNs with higher ENL weight in core ICN regions, suggesting that ICN function may be subserved by nonlinear processes concentrated within network centers. We also found that a uniquely identified ENL ICN distinguished individuals with schizophrenia from healthy controls while a uniquely identified LIN ICN did not, emphasizing the valuable complementary information that can be gained by incorporating measures that are sensitive to nonlinearity in future analyses. Moreover, the ENL estimates of ICNs associated with auditory, linguistic, sensorimotor, and self-referential processes exhibit heightened sensitivity towards differentiating between individuals with schizophrenia and controls compared to LIN counterparts, demonstrating the translational value of our approach and of the ENL estimates of ICNs that are frequently reported as disrupted in schizophrenia. In summary, our findings underscore the tremendous potential of connectivity domain ICA and nonlinear information in resolving complex brain phenomena and revolutionizing the landscape of clinical FC analysis.

摘要

功能磁共振成像(fMRI)研究通常使用独立成分分析(ICA)等方法,根据血液动力学信号之间的时间关系来估计脑内固有连接网络(ICN)。虽然ICN被认为代表了在各种心理现象中起重要作用的功能源,但目前的方法主要是为识别主要反映线性统计关系的ICN而设计的。然而,构成神经系统的元素常常表现出非常复杂的非线性相互作用,这些相互作用可能参与认知操作,并在精神分裂症等精神疾病中发生改变。因此,需要开发能够从对非线性关系敏感的测量中有效捕获ICN的方法。在此,我们提出一种新方法,通过将静息态fMRI(rsfMRI)数据转换到连接域,从明确的非线性全脑功能连接(ENL-wFC)中估计ICN,使我们能够从距离相关模式中捕获线性全脑功能连接(LIN-wFC)分析会遗漏的独特信息。我们的研究结果表明,通常从线性(LIN)关系中提取的ICN也反映在明确的非线性(ENL)连接模式中。ENL ICN估计显示出更高的可靠性和稳定性,突出了我们的方法从rsfMRI数据中有效量化ICN的能力。此外,我们观察到LIN和ENL ICN之间存在一致的空间梯度模式,核心ICN区域的ENL权重更高,这表明ICN功能可能由集中在网络中心的非线性过程所支持。我们还发现,一个独特识别的ENL ICN能够区分精神分裂症患者和健康对照,而一个独特识别的LIN ICN则不能,这强调了在未来分析中纳入对非线性敏感的测量可以获得有价值的补充信息。此外,与LIN对应物相比,与听觉、语言、感觉运动和自我参照过程相关的ICN的ENL估计在区分精神分裂症患者和对照方面表现出更高的敏感性,证明了我们的方法以及经常报道在精神分裂症中被破坏的ICN的ENL估计的转化价值。总之,我们的研究结果强调了连接域ICA和非线性信息在解决复杂脑现象以及彻底改变临床FC分析格局方面的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/683f/10680735/37cce8465803/nihpp-2023.11.16.566292v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验