Suppr超能文献

基于大数据的轻量化深度学习模型在环境艺术设计中的场景分类

Scene Classification in the Environmental Art Design by Using the Lightweight Deep Learning Model under the Background of Big Data.

机构信息

Department of Art and Design, Shaanxi Fashion Engineering University, Xi'an 710000, China.

出版信息

Comput Intell Neurosci. 2022 Jun 13;2022:9066648. doi: 10.1155/2022/9066648. eCollection 2022.

Abstract

On the basis of scene visual understanding technology, the research aims to further improve the classification efficiency and classification accuracy of art design scenes. The lightweight deep learning (DL) model based on big data is used as the main method to achieve real-time detection and recognition of multiple targets and classification of the multilabel scene. This research introduces the related foundations of the DL network and the lightweight object detection involved. The data for a multilabel scene classifier are constructed and the design of the convolutional neural network (CNN) model is described. On public datasets, the effectiveness of the lightweight object detection algorithm is verified to ensure its feasibility in the classification of actual scenes. The simulation results indicate that compared with the YOLOv3-Tiny model, the improved IRDA-YOLOv3 model reduces the number of parameters by 56.2%, the amount of computation by 46.3%, and the forward computation time of the network by 0.2 ms. It means that the IRDA-YOLOv3 network obtained after the improvement can realize the lightweight of the network. In the scene classification of complex traffic roads, the classification model of the multilabel scene can predict all kinds of semantic information of a single image and the classification accuracy for the four scenes is more than 90%. In summary, the discussed classification method based on the lightweight DL model is suitable for complex practical scenes. The constructed lightweight network improves the representational ability of the network and has certain research value for scene classification problems.

摘要

基于场景视觉理解技术,本研究旨在进一步提高艺术设计场景的分类效率和分类精度。研究采用基于大数据的轻量级深度学习(DL)模型作为主要方法,实现了多目标的实时检测和识别以及多标签场景的分类。本研究介绍了 DL 网络的相关基础和所涉及的轻量级目标检测。构建了多标签场景分类器的数据,并描述了卷积神经网络(CNN)模型的设计。在公共数据集上验证了轻量级目标检测算法的有效性,以确保其在实际场景分类中的可行性。仿真结果表明,与 YOLOv3-Tiny 模型相比,改进后的 IRDA-YOLOv3 模型减少了 56.2%的参数数量、46.3%的计算量和 0.2ms 的网络正向计算时间。这意味着改进后的 IRDA-YOLOv3 网络可以实现网络的轻量化。在复杂交通道路的场景分类中,多标签场景的分类模型可以预测单张图像的各种语义信息,并且对四个场景的分类准确率均超过 90%。总之,讨论的基于轻量级 DL 模型的分类方法适用于复杂的实际场景。所构建的轻量级网络提高了网络的表示能力,对场景分类问题具有一定的研究价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验